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Abstract— Three-way clustering has been an active research1

topic in the field of cluster analysis in recent years. Some2

efforts are focused on the technique due to its feasibility and3

rationality. We observe, however, that the existing three-way4

clustering algorithms struggle to obtain more information and5

limit the fault tolerance excessively. Moreover, although the6

one-step three-way allocation based on a pair of fixed, global7

thresholds is the most straightforward way to generate the8

three-way cluster representations, the clusters derived from a9

pair of global thresholds cannot exactly reveal the inherent10

clustering structure of the dataset, and the threshold values are11

often difficult to determine beforehand. Inspired by sequential12

three-way decisions, we propose an algorithm, called multistep13

three-way clustering (M3W), to address these issues. Specifically,14

we first use a progressive erosion strategy to construct a multilevel15

structure of data, so that lower levels (or external layers)16

can gather more available information from higher levels (or17

internal layers). Then, we further propose a multistep three-way18

allocation strategy, which sufficiently considers the neighborhood19

information of every eroded instance. We use the allocation20

strategy in combination with the multilevel structure to ensure21

that more information is gradually obtained to increase the22

probability of being assigned correctly, capturing adaptively the23

inherent clustering structure of the dataset. The proposed algo-24

rithm is compared with eight competitors using 18 benchmark25

datasets. Experimental results show that M3W achieves superior26

performance, verifying its advantages and effectiveness.27

Index Terms— Clustering, fuzzy-rough set theory, three-way28

decision theory, uncertain data analysis.29

I. INTRODUCTION30

AS THE most famous unsupervised learning tool, clus-31

tering technology has been developing for more than32

60 years. Clustering is the tool for categorizing unlabeled33

data instances in such a way that data instances in the same34

group are more similar to each other than to those in other35

groups. It is widely used in various areas, including anomaly36

detection [1], [2], image segmentation [3], and so on [4].37

Most clustering algorithms are developed under the assump-38

tion that an instance belongs to at most one group. In other39
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words, these methods define two types of membership rela- 40

tions between an instance and a group, including belong-to 41

(i.e., the instance belongs to the group) and not belong-to 42

(i.e., the instance does not belong to the group). For ease of 43

description, we refer to these algorithms as two-way clustering 44

algorithms. However, in many practical situations, there are 45

some overlapping regions between different clusters [5]. It is 46

difficult to assign instances in the overlapping region to exactly 47

one group. Furthermore, some applications require that an 48

instance can be assigned to two or more groups. A news report, 49

for example, may belong to both “sports” and “culture” in the 50

news topic summary. It is obvious that two-way clustering is 51

not suitable for such applications. 52

To address the issues above, Yu and Wang [6] propose 53

a framework of three-way clustering, which is derived from 54

three-way decisions [7], [8]. 55

A. Three-Way Decision and Three-Way Clustering 56

A theory of three-way decision concerns problem-solving 57

and information processing based on a particular way of 58

human thinking known as triadic thinking [8]. According to 59

this basic idea, a three-way decision theory is to divide a 60

universal set into three disjoint regions and to make three 61

types of decisions for achieving the desired outcome, accord- 62

ingly. The theory is proposed originally to provide a sound 63

semantical interpretation of decision-theoretic rough sets [7]. 64

The subsequent studies focus on a more general sense of 65

three-way decision that goes far beyond rough set theory. 66

The three-way decision becomes a paradigm of thinking and 67

information processing based on triadic patterns [8]. A more 68

comprehensive theory includes sequential three-way deci- 69

sion [9], [10], statistical three-way decision [11], trisecting– 70

acting–outcome model [8], and so on. These studies foster 71

a number of newly emerged topics, for example, three-way 72

attribute reduction [12], three-way clustering [6], three-way 73

conflict analysis [13], three-way classification [14], and many 74

more. 75

According to triadic thinking of three-way decision, three- 76

way clustering defines three types of membership relations 77

between an instance and a cluster, including belong-to cer- 78

tainly (i.e., the instance belongs to the cluster certainly), 79

belong-to partially (the instance may be part of the cluster and 80

may potentially belong to other clusters), and not belong-to 81

certainly (i.e., the instance does not belong to the cluster 82

certainly). Based on these membership relations, a dataset can 83

be divided into three regions with respect to a cluster: positive 84

region, boundary region, and negative region. The positive 85

region of a cluster contains the data instance that are definitely 86

a part of the cluster. The boundary region contains border 87
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Fig. 1. Cluster representations of (a) two-way clustering and (b) three-way
clustering.

data instances in the cluster that may be a part of the cluster88

but may also belong to other clusters. The negative region89

of a cluster is the collection of data instances not likely to90

belong to it. In three-way clustering, a cluster is represented91

by an interval set (a pair of nested sets called lower bound92

and upper bound, respectively). Fig. 1 [15] illustrates simple93

examples of two-way and three-way cluster representations.94

As shown in Fig. 1(a), two-way clustering assigns each point to95

a cluster (C1 or C2). In Fig. 1(b), �Ci and
···
Ci denote the positive96

region and the boundary region of Ci , where i = 1, 2 (see97

Section III). In contrast to two-way representations of clusters,98

where every cluster is depicted by a set of instances, three-way99

clusters with interval sets can distinguish the intension and100

extension of each concept, contributing to better processing101

the data in the overlapping region, as shown in Fig. 1(b).102

B. Motivation and Contribution103

Recently, a series of three-way clustering approaches have104

been proposed and studied. Although these methods are signif-105

icantly better than two-way ones in terms of rationality,1 they106

have some shortcomings, which may hinder their widespread107

applications.108

1) Existing three-way clustering algorithms adopt an allo-109

cation strategy or clustering strategy based on the one-110

step (single) three-way decision-making process. These111

algorithms do not struggle to obtain more available112

information and excessively limit fault tolerance. When113

there is no detailed information available, some data114

may be assigned incorrectly. Even worse, in three-way115

extensions of density-based clustering algorithms,116

a wrongly assigned instance can cause greater issues117

in subsequent allocations, leading to unsatisfactory118

performance.119

2) Most existing three-way clustering methods adopt an120

evaluation function and a pair of partition thresholds to121

obtain the three-way representations of clusters. Gen-122

erally, these algorithms apply a pair of fixed, global123

thresholds across the entire dataset. However, the thresh-124

old setting is only applicable to the clusters with the125

same characteristics, not to the clusters with differ-126

ent distributions and different densities. Fundamentally,127

these algorithms cannot sufficiently account for both the128

1A three-way cluster with interval sets shows that not only does an instance
certainly belong to the cluster but also that an instance might belong to the
cluster intuitively.

inherent characteristics of every cluster and the positions 129

of each instance. As a result, these algorithms fail to 130

recognize clusters with different distribution patterns. 131

Inspired by the sequential three-way decision [9], [10], 132

we propose a multistep three-way clustering algorithm, called 133

M3W. Sequential three-way decisions are also known as mul- 134

tistep three-way decisions. The sequential three-way decision 135

theory is initially developed to deal with a cost-sensitive 136

decision-making problem based on multiple levels of gran- 137

ularity. The multilevel structure may take the form of multiple 138

representations of data or multiple descriptions of problems. 139

A multilevel structure creates a partial ordering relation where 140

the finer granularities are represented at lower levels, and 141

the coarser granularities are represented at higher levels. 142

At a higher level, we may make the acceptance or rejection 143

decisions for certain data with sufficient information and do 144

not make decisions immediately for some data with incomplete 145

information. By moving to a lower level, these remaining data 146

can be investigated again, and a proper judgment can be given, 147

once we have enough information about them. 148

As with density-based clustering, the proposed algorithm 149

is based on the assumption that the core regions of clusters 150

should be separated implicitly by the boundary regions of 151

clusters [16], [17]. Based on this assumption, we use density 152

information of data to construct a multilevel structure of 153

data, where the higher levels (or the internal layers) with 154

a higher density are closer to core regions of clusters, and 155

the lower levels (or the external layers) with a lower density 156

are closer to boundary regions of clusters. By introducing the 157

idea of sequential three-way decisions, we design a multistep 158

clustering process. After the multilevel structure is created, all 159

clusters can be formed using the clustering process from the 160

highest level down. 161

Specifically, we first generate a multilevel structure of data 162

using a progressive erosion strategy [16], [17]. In the multi- 163

level structure, the data at the highest level (i.e., the data from 164

the core regions) can be better separated and clustered more 165

easily. In contrast, the data at a lower level may be located at 166

the boundary regions of clusters, even the overlapping regions 167

of clusters. Then, we use an adaptive scheme that determines 168

automatically the distance threshold of every instance. With 169

the help of the adaptive scheme, a connectivity-based approach 170

is used to cluster the core data (i.e., data at the highest level). 171

As a result, it is possible to detect clusters with a variety 172

of distributions. Finally, the data at lower levels ought to get 173

adequate attention, since they can be potentially misclassified. 174

To assign the data at the lower levels to the correct clusters, 175

we try to consider the cluster assignments the data at the 176

higher levels (i.e., more detailed information). We use a “two- 177

stage” allocation scheme based on the deferred decision2 to 178

assign the data at the lower levels (or the external layers). The 179

proposed clustering can gradually construct the core region 180

and boundary region of each cluster, following the levels from 181

high to low. 182

2In three-way decision, the deferred decision is viewed as the third decision-
making behavior. Deferred decision making is an option when the available
information is insufficient, or the evidence is not strong enough to support an
acceptance or rejection.
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The contributions of this work are summarized as follows.183

1) We propose a novel three-way clustering, called M3W,184

that combines the strengths of progressive erosion185

strategy and sequential three-way decision. Different186

from most existing three-way clustering methods,187

M3W is designed as an iteration process, which can188

handle clusters with complex distributions and unclear189

boundaries better.190

2) As part of the proposed algorithm, we use the191

progressive erosion strategy as a means of generating192

a multilevel structure of data, so that the initial core193

regions of nearby clusters can be separated clearly. This194

helps M3W detect clusters with overlapping regions or195

unclear boundaries.196

3) With the aid of the generated multilevel structure,197

we craft a multistep clustering process that utilizes198

the idea of the sequential three-way decision.3 The199

process uses fully the neighborhood information of200

every instance to determine their class assignments201

level by level. All these make it possible to capture202

the inherent clustering structure of the dataset with203

different characteristics.204

Here is an outline of the rest of this article. We review the205

studies that are related to our work in Section II. Section III206

briefly introduces the background knowledge, notations, and207

definitions. The details of M3W are introduced in Section IV.208

Section V presents the experiments on synthetic and real209

datasets. Finally, we summarize the concluding remarks and210

future work in Section VI.211

II. RELATED WORK212

In recent decades, soft clustering algorithms have been213

proposed and applied successfully. The fuzzy C-means214

(FCM) [18] is probably still the most widely used algorithm215

for soft clustering. By introducing rough set theory, Lingras216

and West [19] propose the rough K-means algorithm (RKM),217

which uses interval sets to represent clusters with vague and218

imprecise boundaries. In an effort to enrich this field further,219

Yu et al. [6] propose three-way clustering by incorporating220

three-way decisions into clustering. Due to the convenience221

of storing and computing, three-way clustering algorithms222

have been extended to accommodate different scenarios, and223

a series of algorithms have been developed, such as consensus224

clustering [20], [21], [22], incremental three-way cluster-225

ing [23], three-way clustering for network data [24], three-way226

clustering for incomplete data [25], and multiview three-way227

clustering [26], [27]. Here, we review and analyze the most228

closely related research to our algorithm.229

Wang and Yao [28] introduce the erosion and dilation ideas230

from mathematical morphology into K-means and propose231

a general framework of three-way clustering based on a232

contraction-and-expansion strategy, called CE3. Yu et al. [29]233

propose a three-way clustering method based on DBSCAN234

(3W-DBSCAN). With the use of a type function and a pair235

of density thresholds, this algorithm can convert a two-way236

3Its main idea is that we do not make a decision immediately when the
information is insufficient or incomplete until we have enough information
about these problems to make the right decision.

density-based cluster into a three-way density-based cluster. 237

However, the clustering results obtained by the two approaches 238

(CE3 and 3W-DBSCAN) are heavily dependent on the perfor- 239

mance of the corresponding original algorithms (K-means and 240

DBSCAN). Different from CE3, TWKM [15] is another ver- 241

sion of three-way K-means, which adopts perturbation analysis 242

to separate the core regions from the supports. Zhang [30] 243

proposes a three-way c-means algorithm (called TCM) by 244

integrating the three-way weight and three-way assignment. 245

3WDPET [31] is a three-way density peak clustering method 246

that combines evidence theory and density peak clustering. 247

However, the four algorithms (CE3, TWKM, TCM, and 248

3WDPET) need a specification of the number of clusters in 249

advance. 250

Clusters are usually represented as three-way representa- 251

tions by means of a pair of partition thresholds. In prac- 252

tice, however, it is very difficult to tune these threshold 253

values. Several studies are conducted in response to this issue. 254

3WC-OR [32] uses the genetic algorithms to determine 255

automatically the partition thresholds. In the same year, 256

Yu et al. [33] propose an efficient three-way clustering algo- 257

rithm based on the idea of universal gravitation, which can 258

automatically adjust partition thresholds. A threshold selection 259

approach is proposed by Jia et al. [34] to improve three- 260

way clustering. However, unlike our algorithm, where the 261

three-way clusters are formed gradually by an adaptive multi- 262

step allocation scheme, these three algorithms are based on an 263

automatic threshold selection approach, where the clustering 264

results are driven by the estimated thresholds. 265

III. BACKGROUND AND RELATED STUDIES 266

A. Notations 267

Consider a set of N instances X = {x1, . . . , xN }, where 268

xi ∈ R
M , 1 � i � N . For an erosion process of L levels, 269

X(l) denotes a set of the remaining uneroded data at the 270

lth level, and X(l)
E denotes a set of eroded data at the lth 271

level. The set of uneroded data at the higher level is given 272

by X(l+1) = X(l) \ X(l)
E . Before the erosion process is not 273

performed, X(1) = X. X(l)
B denotes a set of eroded data at the 274

first l levels, as follows: 275

X(l)
B = X(1)

E ∪ · · · ∪ X(l)
E (1) 276

where �xi − x j� denotes the Euclidean distance between xi 277

and x j . N (l)
k (xi) denotes the kth nearest neighbor of xi at the 278

lth level. kNN(l)(xi) denotes a set of k nearest neighbors (k- 279

NN) of an instance xi at the lth level. For each instance x j ∈ 280

kNN(l)(xi), we have x j ∈ X(l). Similarly, a set of reverse k 281

nearest neighbors (reverse k-NN) of an instance xi at the lth 282

level can be denoted by Rk N N (l) (xi). 283

kNN(l)
B (xi) denotes a set of k nearest eroded neighbors (i.e., 284

each eroded neighbor x j ∈ X(l−1)
B ) of an instance xi in X(l). 285

For sake of readability, the abovementioned notations are 286

summarized in Table I. 287

B. Three-Way Representation 288

In terms of a three-way representation, a dataset can be 289

divided into three regions with respect to a cluster Ci : positive 290
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TABLE I

NOTATIONS IN M3W CLUSTERING

region (or called core region, �Ci ), boundary region (
···
Ci ), and291

negative region ( �Ci ). The data instances in �Ci definitely belong292

to Ci . The data instances in
···
Ci possibly belong to Ci and293

possibly belong to other clusters. The data instances in �Ci294

definitely do not belong to Ci .295

In three-way clustering, a cluster is represented by a pair of296

nested sets [6], as follows:297

Ci =
�
Ci , Ci

� = ��Ci , �Ci ∪
···
Ci

�
(2)298

where Ci is the lower bound of Ci , and Ci is the upper bound299

of Ci . Obviously, Ci = �Ci , Ci = �Ci ∪
···
Ci , and Ci ⊆ Ci ⊆ X.300

Therefore, the three-way clustering results can be described301

as follows:302

C = {C1, . . . , CK } =
��

Ci , Ci
�|1 � i � K

	
. (3)303

A three-way cluster satisfies the following properties [6].304

Property 1 (Non-Emptiness): The lower bound of each305

cluster cannot be empty. Ci �= ∅, 1 � i � K .306

Property 2 (Universe): The union of the upper bounds of all307

clusters is the universe (the whole dataset). C1∪· · ·∪CK = X.308

Property 3 (Mutual Exclusion): The intersection of lower309

bounds of any two clusters is empty. Ci ∩C j = ∅, 1 ≤ i, j ≤310

K and i �= j .311

Property 1 implies that a cluster cannot be empty. It ensures312

that every cluster is meaningful. Properties 2 and 3 state that313

an instance must belong to one or more clusters.314

IV. M3W METHOD315

In this section, we first explain each phase of M3W,316

whose architecture is shown in Fig. 2. Then, we analyze its317

computational complexity.318

A. Dynamic Density Estimation 319

Kernel density estimation is a widely used density measure, 320

and the kernel density estimator of xi is given by the following 321

equation: 322

ρi =


x j∈V

κ

��x j − xi�
h

�
(4) 323

where κ(·) is a nonnegative and monotonically decreasing 324

function, whereas h is a term for bandwidth used to control 325

scale. Variables xi and x j refer to a test instance and a sample, 326

respectively. V is a set of samples x j . 327

As for the kernel function, we use the most widely used 328

kernel–Gaussian kernel function because of its smoothness. 329

If a kernel function can be seen as a filter, the bandwidth h is 330

a weighted term in the filter. Some work takes the bandwidth 331

h as an input parameter. This scheme, however, poses two 332

problems. The first problem is having to specify the parameter 333

by the user, thereby reducing its usability. The second problem 334

is that a filter with a global weight may imply that data 335

instances in low-density regions (the distance between them 336

is large) are given a relatively low weight, whereas data 337

instances in high-density regions are given a relatively high 338

weight. Different regions of the kernel are expected to have 339

different bandwidths. A sample and common adaptive scheme 340

is used [35]: h j is set to be equal to the distance between 341

x j to its kth nearest neighbor. According to the scheme, the 342

bandwidth varies with the location of the sample. 343

To discover the distribution information of data, we uti- 344

lize reverse k nearest neighbors (Rk-NN). Unlike traditional 345

adaptive Gaussian kernel density estimation-based, our method 346

employs a dynamic strategy, in which the density of the 347

remaining data can be re-estimated at each level 348

ρ
(l)
i =



x j∈RkNN(l)(xi )

exp

�
− �x j − xi�2

�x j − N (l)
k

�
x j

��2

�
. (5) 349

B. Progressive Erosion Strategy 350

Our algorithm is based on the observation that boundaries 351

between different clusters tend to be misclassified, especially 352

when they are not obvious. According to the observation, 353

we can conclude that the cores of clusters may be better clus- 354

tered than their boundaries. In this work, we use a progressive 355

erosion strategy to discover the “initial” cores of the latent 356

clusters. Different from traditional approaches, which adopt a 357

fixed, global threshold to define directly the cores of the clus- 358

ters, an erosion strategy can erode iteratively the boundaries 359

between clusters to draw automatically the “initial” cores. Due 360

to the introduction of the dynamic density estimation in the 361

progressive erosion strategy, the data instances on the external 362

part of the cluster are eroded earlier than those on the inner 363

part, despite being at the same density level (based on the 364

non-dynamic density estimation). 365

Each level of erosion involves three steps. The first step 366

is to estimate the density for each instance at the current 367

level by executing (5). The second step is to sort the data 368

according to density values. Third, some of these data are 369
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Fig. 2. Architecture of M3W.

deemed boundaries and are eroded. Formally, the eroded data370

whose density values are smaller than a cutoff value can be371

given by the following equation:372

X(l)
E =


xi | ρ(l)

i � ρ(l)
c

�
. (6)373

Similar to [36] and [37], a series of cutoff values can374

be given indirectly by a percentile. Specifically, the data375

instances with density values in the tenth percentile or lower376

are considered eroded data. In other words, ρ(l)
c is set to remain377

90% of X(l) whose density values are relatively higher at each378

iteration. At the highest level, the set of uneroded data is as379

follows:380

X(l+1) = X(l) \ X(l)
E . (7)381

The highly separable data instances remain after the erosion382

process. The set of these final remaining data is denoted383

by X(L+1).384

While revealing the “initial” cores of the latent clusters,385

the progressive erosion process produces a multilevel structure386

of the data, i.e., X(1)
E , . . . , X(L)

E , X(L+1). With the aid of the387

generated multilevel structure, we can easily reconstruct latent388

clusters by using the technique we describe next.389

C. Multistep Clustering Process390

To construct the three-way clusters, we use a multistep391

approach based on sequential three-way decisions. The pro-392

posed multistep clustering process mainly consists of two393

clustering phases: the data instances in the set X(L+1) are394

clustered by using a connectivity-based approach; the eroded395

data instances are assembled in the order (the reverse order396

of the erosion, i.e., X(L)
E , . . . , X(2)

E , X(1)
E ) by using a three-way 397

approach. 398

1) Connectivity-Based Approach: Inspired by DBSCAN 399

[38] and HDBSCAN [39], we define a connectivity-based 400

approach to cluster the final remaining data, X(L+1). Before 401

presenting the details of this connectivity-based approach, 402

we first formalize some concepts in the following. 403

Definition 1 (Core Distance): The core distance dcore(xi) of 404

every instance xi ∈ X with respect to k is the distance from 405

xi to its kth nearest neighbor. 406

Definition 2 (Adaptive Distance Threshold): The adaptive 407

distance threshold of every instance xi in the lth level is 408

defined as follows: 409

ε(l)
core(xi) 410

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mean(Dcore)+ Std(Dcore), l = 1

min

⎧⎪⎨⎪⎩



x j∈kNN(l)
B (x j)

γ

k
�xi − x j�, ε(l−1)

core

⎫⎪⎬⎪⎭, 2 ≤ l ≤ L + 1

411

(8) 412

where kNN(l)
B (x j) denotes a set of k nearest eroded neighbors 413

of an instance xi in X(l) (see Section II-A). γ is a constant 414

factor. We empirically determine its value as 3. 415

Definition 3 (Mutual Reachability Distance Threshold): 416

The mutual reachability distance threshold between two data 417

instances xi and x j in X(L+1) is defined as εmr (xi , x j) = 418

max{ε(L+1)
core (xi), ε

(L+1)
core (x j)}. 419

Definition 4 (Mutual Reachability): Two data instances 420

xi , x j ∈ X(L+1) are mutual reachable, if there is a series of 421
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data instances xp1, . . . , xpm with p1 = i and pm = j , where the422

distance between any two adjacent data instances xps , xps+1 is423

less than or equal to the mutual reachability distance threshold424

between them, i.e., �xps − xps+1� ≤ εmr (xps , xps+1).425

The “initial” cores of the latent clusters are formed by merg-426

ing all data instances in X(L+1) that are mutually reachable.427

The clustering result at the (L + 1)th level can be denoted428

by C(L+1) = {C(L+1)
1 , . . . , C(L+1)

K } = {(C(L+1)
1 , C(L+1)

1 ), . . . ,429

(C(L+1)
K , C(L+1)

K )}.4430

Note that all data instances in X(L+1) are assigned to431

the core regions of the clusters; thus, the clustering result432

at the (L + 1)th level can also be denoted by C(L+1) =433

{C(L+1)
1 , . . . , C(L+1)

K }.434

2) Three-Way Approach: In subsequent steps, a three-way435

approach can sequentially process X(L)
E , . . . , X(2)

E , X(1)
E . The436

process starts from the data at the Lth level, i.e., X(L)
E . At each437

level, a “two-stage” allocation scheme based on the deferred438

decision (i.e., one-step three-way allocation approach) utilizes439

the neighbor information to cluster data at the current level.440

The allocation scheme consists of two three-way decision441

rules: 1) assign the data at the current level to the core442

region or “candidate” boundary region of the corresponding443

cluster and 2) reassign the data in the “candidate” bound-444

ary regions to the core region or boundary region of the445

corresponding cluster. For convenience, we give some basic446

definitions.447

X(l)
core denotes the union of cores of all current clusters at448

the lth level, i.e., X(l)
core = C(l)

1 ∪ · · · ∪ C(l)
K .449

Definition 5 (Core Neighbors): For every instance xi ∈ X(l)
E ,450

the set of core k nearest neighbors of xi , C N (l)(xi) is its k451

nearest neighbors from X(l+1)
core .452

An instance xi ∈ X(l)
E is assigned to the core region or453

boundary region of its corresponding cluster according to the454

probability of being a member of that cluster.455

The probability is defined as follows:456

P
�
C(l)

r |xi
� =

����x j |x j ∈ C N (l)(xi)
	 ∩ 

xp|xp ∈ C(l)
r

������C N (l)(xi)
�� (9)457

where |X| denotes the cardinality of the set X.458

In the frequency-based membership, for every instance xi ∈459

X(l)
E , P(C(l)

r |xi) provides the percentage of its core neighbors460

who belong to a specific cluster.461

For every unlabeled instance xi ∈ X(l)
E , its probabil-462

ity distribution P(C(l)|xi) = {P(C(l)
1 |xi), . . . , P(C(l)

r |xi), . . . ,463

P(C(l)
K |xi)} can be regarded as a vector of probabilities. The464

length K is the number of clusters. Obviously, the r th entry of465

the vector indicates the probability that the instance belongs466

to the r th cluster.467

We use the probability vector to define a “two-stage”468

allocation scheme based on the deferred decision (i.e., two469

three-way decision rules). Next, we present the definitions of470

Rules 1 and 2.471

Rule 1 is given as follows.472

4More generally, the clustering result at the lth level can be denoted by

C(l) = {C(l)
1 , . . . , C(l)

K } = {(C(l)
1 , C(l)

1 ), . . . , (C(l)
K , C(l)

K )}.

If all core neighbors of xi belong only to the cluster Cr , 473

i.e., if P(C(l)
r |xi) = 1, the instance xi is assigned to the core 474

region of Cr . 475

If its core neighbors do not all belong to the cluster Cr and 476

the probability of being a member of that cluster is higher 477

than that of other clusters, i.e., if 0 < P(C(l)
r |xi) < 1 and 478

P(C(l)
r |xi) = max(P(C(l)|xi)), the instance xi is assigned to 479

the “candidate” boundary region of Cr . We use Rule 2 to 480

further process and assign them to the proper clusters. 481

Rule 2 is given as follows. 482

For every instance xi in the “candidate” boundary region of 483

Cr , if there is a cluster Cs, s �= r , such that the gap between 484

probabilities of being in Cs and Cr is less than (1/K ), i.e., 485

if P(C(l)
r |xi)−P(C(l)

s |xi) < (1/K ) [31], we assign the instance 486

xi to the boundary region of Cr and add it into the boundary 487

regions of clusters that satisfy the condition. Otherwise, the 488

instance is assigned to the core region of Cr . 489

During the clustering process, the data instances at lower 490

levels that are more susceptible to being misclassified obtain 491

gradually more available information (i.e., the cluster assign- 492

ments of their neighbors). We use the “two-stage” allocation 493

scheme to assign as many border data as possible to the correct 494

clusters. 495

This “sequential” three-way process continues until all 496

unlabeled instances at the 1th level are visited and allocated. 497

In the clustering process, all clusters are formed gradually 498

from the highest level down. 499

D. Algorithm and Complexity Analysis 500

In summary, the procedure of M3W algorithm is listed in 501

Algorithm 1. 502

The computational complexity of M3W is dependent on the 503

complexity of the k-NN search method. The complexity of the 504

method is O(k NlogN) for data indexed by some metric tree 505

approaches (e.g., the R* tree and k–d tree) or O(k N2) for 506

nonindexed data, where N is the number of the data, and k is 507

the number of the neighbors. 508

In the erosion phase (from Lines 1 to 6), generating a 509

multilevel structure requires O(Lk N̄C logN̄C )+O(L N̄C ) oper- 510

ations, where L is the number of levels, and N̄C is the average 511

number of all |X(l)|. The complexity of the connectivity-based 512

clustering phase in Lines 7–9 is O(k NC ), where NC is the 513

cardinality of X(L+1) at the (L+1)th level. The computational 514

complexity of the three-way clustering phase in Lines 10–21 515

is O(Lk N̄E ), where the average number of all |X(l)
E |. So, the 516

total time cost is O(Lk N̄C logN̄C + L N̄C + k NC + Lk N̄E ) ∼ 517

O(Lk N̄C logN̄C ). Since L � N, k � N, N̄C ≈ N , the 518

overall complexity of M3W is about O(N logN). 519

V. EXPERIMENTS 520

In this section, we compare the proposed M3W with eight 521

clustering algorithms on 18 benchmark datasets. 522

A. Experiment Setup 523

Eighteen datasets are used to evaluate the performance of 524

the proposed algorithm. The datasets are divided into two 525
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DU et al.: M3W: MULTISTEP THREE-WAY CLUSTERING 7

Algorithm 1 Proposed M3W Algorithm
Input: A set of data, X = {x1, . . . , xN }

The number of neighbors, k
The number of levels, L

Output: The clustering result,
C = {(C1, C1), . . . , (CK , CK )}

// produce a multilevel structure in
the erosion phase

1 X(1)← X;
2 for l = 1; l ≤ L; l ++ do
3 foreach xi in X(l) do
4 ρ(l)

i =�
x j∈RkN N (l) (xi )

ex p(−(�x j − xi�2/�x j − N (l)
k (x j )�2));

5 X(l)
E = {xi | ρ(l)

i � ρ(l)
c };

6 X(l+1) = X(l) \ X(l)
E ;

// obtain C(L+1) in the
connectivity-based clustering phase

7 foreach xi in X(L+1) do
8 foreach x j in k N N (L+1)(xi) do
9 if �xi − x j� ≤ εmr (xi , x j) then merge xi and x j ;

// obtain C(l), 1 ≤ l ≤ L, in the three-way
clustering phase

10 for l = L; l ≥ 1; l −− do
11 C(l)← C(l+1);
12 foreach xi in X(l)

E do
13 if P(C(l)

r |xi) = 1 then
14 C(l)

r = C(l)
r ∪ xi ;

15 else
16 if ∃ j, s.t . P(C(l)

r |xi)− P(C(l)
j |xi) < (1/K ) then

17

···
C(l)

r =
···

C(l)
r ∪ xi ;

18 foreach
s ∈ { j |P(C(l)

r |xi)− P(C(l)
j |xi) < (1/K )} do

···
C(l)

s =
···

C(l)
s ∪ xi ;

19 else
20 C(l)

r = C(l)
r ∪ xi ;

21 C ← C(1);

groups: eight synthetic datasets and ten real-world datasets.526

For visual convenience, all synthetic datasets used in our527

experiments are 2-D datasets, including Triangle1, Trian-528

gle2, S1, S2, T2, Pathbased, Ds2c2sc13, and T4. Real-world529

datasets include Glass, Dermatology, Digits, MSRA, Seg-530

mentation, Optdigits, Statlog, Pendigits, Htru, and Shuttle.531

These benchmark datasets can be found at some published532

benchmarks, such as UCI Machine Learning Data Repository5
533

and clustering benchmark datasets.6 Table II summarizes the534

detailed information of these datasets.535

5http://archive.ics.uci.edu/ml/index.php
6https://github.com/deric/clustering-benchmark

TABLE II

DATASETS USED IN EXPERIMENTS

The evaluation of our algorithm is conducted by com- 536

paring it with eight other clustering algorithms, including 537

3W-DBSCAN [29], 3W-DPET [31], CE3 [28], NEO-K- 538

Means [40], Fuzzy C-means (FCM) [18], rough K-Means 539

(RKM) [19], Kernel K-means (KnK-Means) [41], and spectral 540

clustering (SC) [42]. Among them, 3W-DBSCAN, 3W-DPET, 541

and CE3 are three state-of-the-art three-way clustering algo- 542

rithms. As similar to three-way clustering, NEO-K-Means 543

can also be used to identify overlapping regions between 544

clusters. FCM and RKM are two benchmark algorithms for 545

soft clustering. The KnK-Means and SC algorithms are two 546

representative two-way clustering algorithms. Both are able to 547

identify clusters that have nonlinear shapes. 548

There are two parameters in M3W, namely, the number of 549

neighbors (k) and the number of levels (L). k is a positive 550

integer whose values range from 5 to 30. In addition, L has 551

a value between 2 and 12. η, ε, and k are three parameters 552

of 3W-DBSCAN that indicate the neighborhood radius of the 553

scaling function, the distance threshold, and the density thresh- 554

old (in DBSCAN, the density threshold is called minPts), 555

respectively. η and ε take values from 0.1 to 1 with a step 556

of 0.1. The parameter k range is the same as that of M3W. 557

The 3W-DPET and CE3 both have parameters k and K , which 558

describe the number of neighbors and clusters, respectively. 559

The values of k of two algorithms are selected continuously 560

from 5 to 30. NEO-K-Means has three parameters α, β, and 561

K , which represent the factor of overlap and the factor of 562

nonexhaustiveness and the number of clusters, respectively. 563

Using the parameter settings in [40], the value of α varies 564

from −1 to 3.5 by increasing 0.5, and the parameter range of 565

β is {3, 6}. FCM has two parameters K and m, which describe 566

the number of clusters and the fuzzy exponent, respectively. 567

The value of m varies from 2 to 5 by increasing 0.5. Three 568

parameters of RKM are K , wu , and 	, which represent the 569

number of clusters, the upper approximate weight, and the 570

threshold of the ratio, respectively. wu ranges from 0.1 to 571

0.4 with a step of 0.1, and wu ranges from 0.7 to 1 with 572
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8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Clustering results on Triangle1. (a) M3W. (b) 3W-DBSCAN.
(c) 3W-DPET. (d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM.
(h) KnK-Means. (i) SC.

Fig. 4. Clustering results on Triangle2. (a) M3W. (b) 3W-DBSCAN.
(c) 3W-DPET. (d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM.
(h) KnK-Means. (i) SC.

a step of 0.1. In kernel K-Means, the number of clusters (K )573

is the only parameter. Two parameters of SC are K and σ ,574

which represent the number of clusters and the factor of the575

width of the neighborhoods, respectively. σ ranges from 0.5 to576

4, with a step of 0.5. The number of clusters, K , is assumed577

to be known beforehand in 3W-DPET, CE3, NEO-K-Means,578

FCM, RKM, Kernel K-Means, and SC, and it is set as the true579

number of classes in the dataset. In this case, the comparison580

may not be fair.581

In our experiments, the performance of M3W and com-582

parison algorithms is measured by three widely used cluster583

indices, including normalized mutual information (NMI) [43],584

Fig. 5. Clustering results on S1. (a) M3W. (b) 3W-DBSCAN. (c) 3W-DPET.
(d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM. (h) KnK-Means. (i) SC.

Fig. 6. Clustering results on S2. (a) M3W. (b) 3W-DBSCAN. (c) 3W-DPET.
(d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM. (h) KnK-Means. (i) SC.

adjusted rand index (ARI) [44], and pairwise F1 (F1) [45], 585

which are widely used in previous studies [46], [47], [48]. 586

The higher the scores of the three measures, the better the 587

clustering results. NMI and F1 can yield a value between 588

0 and 1, where 0 and 1 illustrate the inappropriate and appro- 589

priate clustering, respectively. The ARI value varies between 590

−1 and 1. Random labeling may have an ARI near 0, and a 591

perfect match has an ARI of 1. 592
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Fig. 7. Clustering results on T2. (a) M3W. (b) 3W-DBSCAN. (c) 3W-DPET.
(d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM. (h) KnK-Means. (i) SC.

Fig. 8. Clustering results on Pathbased. (a) M3W. (b) 3W-DBSCAN.
(c) 3W-DPET. (d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM.
(h) KnK-Means. (i) SC.

To more objectively reflect the performance of various593

algorithms, we run each algorithm with parameter ranges594

and take the best clustering result for each dataset. For595

CE3, NEO-K-Means, FCM, RKM, Kernel K-Means, and SC,596

we repeat each experiment with the same parameter input597

25 times to reduce the influence of random centroid initial-598

ization and report the best result (from the best parameter599

input) in terms of the averages and standard deviations.600

Unlike them, 3W-DBSCAN, 3W-DPET, and our algorithm are601

deterministic algorithms. In other words, if one gives a specific602

parameter input, the clustering result will always be the same.603

Fig. 9. Clustering results on Ds2c2sc13. (a) M3W. (b) 3W-DBSCAN.
(c) 3W-DPET. (d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM.
(h) KnK-Means. (i) SC.

Fig. 10. Clustering results on T4. (a) M3W. (b) 3W-DBSCAN. (c) 3W-DPET.
(d) CE3. (e) NEO-K-Means. (f) FCM. (g) RKM. (h) KnK-Means. (i) SC.

Therefore, the results do not have their standard deviations. 604

The experiments are performed using a PC machine equipped 605

with Intel(R) Core(TM)-i7-9700F CPU and 32-GB RAM in 606

the MATLAB environment. 607

B. Experimental Results on Synthetic Datasets 608

In this section, we demonstrate the clustering results on 609

eight synthetic datasets. 610

Triangle1 and Triangle2 have four Gaussian-distributed 611

clusters with different variances. Figs. 3 and 4 demonstrate 612
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TABLE III

PERFORMANCE COMPARISON OF M3W ON SYNTHETIC DATASETS

the clustering results of different clustering on two datasets.613

In Triangle2, the margins between adjacent clusters are614

smaller than those in Triangle1. Fig. 3 shows that M3W,615

3W-DBSCAN, and 3W-DPET are able to distinguish perfectly616

clusters in Triangle1. Other algorithms all detect the general617

shape of each cluster, but there are some erroneously clustered618

points. Fig. 4 shows that the results of M3W, 3W-DBSCAN,619

and 3W-DPET are better than those of other algorithms.620

Note that the edges of some points are marked with one621

color, while their “faces” are marked with another. This622

means that these points belong to both of the color-coded623

clusters.624

In the S1 and S2 datasets, there are 5000 points grouped625

around 15 clusters with varying levels of overlap. S2 has626

a higher level of overlap than S1. This means S1 is well627

clustered compared with S2. Figs. 5 and 6 show that M3W,628

CE3, NEO-K-Means, and SC get better clustering performance629

than other algorithms. It is noteworthy that 3W-DBSCAN630

yields an extremely bad result, where different clusters on S2631

are merged into a single one. This is probably caused by the632

properties of DBSCAN. In DBSCAN, a density-based cluster633

is defined as a contiguous region with high density. DBSCAN 634

(or 3W-DBSCAN) may create incorrect links between adjacent 635

clusters when there is a very small margin between them. The 636

erosion strategy employed by M3W along with the multistep 637

association strategy solves this problem perfectly, as shown in 638

Fig. 6. 639

A comparison of clustering results on T2 is shown in 640

Fig. 7. In this dataset, a line-shaped cluster is located between 641

two oval-shaped clusters. Our algorithm is the only one 642

that can distinguish the general shapes of clusters. Also, 643

a few points in the boundary regions are assigned to multiple 644

clusters. 645

As shown in Fig. 8, Pathbased is challenging for most 646

clustering algorithms. In this dataset, two Gaussian distrib- 647

uted clusters are surrounded by a half-circle cluster, and 648

adjacent clusters are closely spaced (especially, the bound- 649

ary between the half-circle cluster and the right Gaussian 650

distributed cluster is vague and unclear). Although the 651

counterparts fail to find the optimal structure of three 652

clusters, our algorithm gives a much more satisfactory 653

result. 654
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TABLE IV

PERFORMANCE COMPARISON OF M3W ON REAL-WORLD DATASETS

Ds2c2sc13 consists of 13 clusters with varied sizes and655

shapes. As shown in Fig. 9, M3W outperforms other656

algorithms on the dataset. Only a few points in two small657

regions are assigned to multiple clusters.658

T4 is composed of six complex-shaped clusters. Fig. 10659

shows that only M3W can generate the optimal structure of660

clusters on T4.661

As shown in Figs. 3–8, when nearby clusters have unclear662

and vague boundaries, the proposed algorithm still per-663

forms well. M3W is seen as a DBSCAN-like algorithm. For664

density-based clustering methods, a small margin between665

adjacent clusters may lead to the undesirable connectivity of666

the clusters. Unlike other density-based clustering algorithms,667

the proposed algorithm overcomes this problem effectively.668

M3W uses the erosion strategy to ensure that the initial core 669

regions of nearby clusters are clearly separated. Figs. 8–9 670

show that our algorithm is very effective in finding clusters 671

with complex shapes. The main reason is that a multistep 672

association strategy is adopted to ensure that more infor- 673

mation is obtained gradually to improve the probability of 674

being correctly assigned, thereby obtaining satisfactory results. 675

To further explain the reason behind M3W’s superiority, 676

we use the Pathbased dataset for the example and present 677

a more detailed experimental analysis in the Supplementary 678

Material. 679

The quantitative results of these synthetic datasets are illus- 680

trated in Table III. It can be examined from the experimental 681

results that the proposed algorithm clearly outperforms other 682
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Fig. 11. Running time comparison. (a) Linear scale on the y-axis. (b) Log scale on the y-axis.

algorithms on these synthetic datasets. Additional results are683

presented in the Supplementary Material, including accu-684

racy (ACC) and two internal clustering validation measures685

(S_Dbw index and local cores-based cluster validity (LCCV)686

index).687

C. Experimental Results on Real-World Datasets688

In Table IV, we list the clustering performance of the pro-689

posed algorithm and eight competitors on real-world datasets.690

The highest scores for each dataset are highlighted in bold691

type in Table IV. The NMI scores of M3W are higher than692

those of other algorithms in all test cases. In addition, the693

proposed algorithm achieves the best results in terms of ARI694

and F1 on at least eight real-world datasets. Specifically,695

on the Glass dataset, the result obtained by the proposed696

algorithm is significantly superior to the second-best result.697

On the Dermatology dataset, although the ARI and F1 values698

of M3W are slightly lower than those of 3W-DPET, it out-699

performs other algorithms in terms of NMI. The results on700

Digits show that our algorithm exceeds the second-best one701

by over 5% points in terms of NMI and F1. M3W and702

3W-DBSCAN are extremely close in F1, with a difference of703

just 0.03. On the MSRA dataset, M3W performs better than704

other algorithms in terms of all evaluation metrics. The pro-705

posed algorithm shows an advantage on Segmentation. On the706

Optdigits dataset, the proposed technique is slightly superior to707

other competing algorithms. The proposed algorithm outper-708

forms other competing algorithms on the Statlog dataset. As a709

result of the Pendigits dataset, our algorithm has over 10%710

higher performance than the second-best one in all evaluation711

metrics. On the Htru and Shuttle datasets, M3W is significantly712

superior to other algorithms. Additional results are presented713

in the Supplementary Material, including Accuracy (ACC) and714

two internal clustering validation measures (S_Dbw Index and715

LCCV index). In addition, we use t-SNE [49] to visualize the716

clustering results on real-world datasets in the Supplementary717

Material.718

In summary, the superiority of M3W can be attributed719

to two factors: 1) the progressive erosion and 2) the mul-720

tistep allocation strategy. The erosion process can reveal721

the natural structure of the latent clusters. The multistep722

allocation fully takes advantage of the neighborhood informa- 723

tion, thereby refining the clustering results. In contrast, other 724

three-way clustering algorithms do not sufficiently consider the 725

neighborhood information of the data and the cluster structure. 726

This may affect the clustering performance. 727

D. Running Time 728

This section compares the running times of M3W and other 729

three-way clustering algorithms (3W-DBSCAN, 3WDPET, 730

and CE3)7 on synthetic datasets with different numbers of data 731

instances (N = 1000:1000:10000). For a fair comparison, the 732

number of neighbors (a parameter common to all algorithms) 733

is kept at 20. To determine the running time, we use the 734

average and standard deviation of 25 repeated experiments. 735

We perform all experiments in the MATLAB environment on 736

a PC machine containing an Intel(R) Core(TM)-i7-9700F CPU 737

and 32-GB RAM. 738

Fig. 11 presents the averages and standard deviations of the 739

running times for M3W, 3W-DBSCAN, 3WDPET, and CE3. 740

The error bars in Fig. 11 indicate the standard deviations. 741

We see that the 3WDPET is significantly slower than other 742

algorithms (3W-DBSCAN, 3WDPET, and M3W) in Fig. 11(a). 743

To provide a further comparison, Fig. 11(b) shows this same 744

result using a log scale on the y-axis. The following observa- 745

tions can be drawn from Fig. 11(b). M3W is faster in most 746

cases than 3W-DBSCAN and CE3. As the number of data 747

instances increases, the advantage that M3W shows is more 748

pronounced, indicating that it is more scalable than other 749

three-way clustering algorithms. 750

VI. CONCLUSION 751

This article presents a new three-way clustering algorithm, 752

called M3W. A progressive erosion technique using dynamic 753

density estimation is adopted to generate a multilevel structure 754

of the data. We define a multistep allocation strategy by 755

7To make a fair comparison, we chose other three-way clustering algorithms
as our comparison partners in the running time experiments. A three-way
clustering algorithm is often slower than a two-way clustering algorithm,
because it takes more time to compute and store cluster representations with
interval sets (see Section I-A). In the Supplementary Material, we provide a
comparison of all clustering algorithms in terms of running time.
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integrating the idea of sequential three-way decisions into the756

clustering process. With the aid of the multilevel structure of757

the data, the allocation strategy may exploit more available758

information, leading to better clustering. Experiments on both759

synthetic and real datasets demonstrate that M3W has satis-760

factory performance.761

In future work, we plan to extend M3W to online learning.762

Determining the parameters (i.e., k and L) automatically763

is also an interesting and worth-exploring issue. Moreover,764

we plan on developing a general framework for sequential765

three-way clustering.766

REFERENCES767

[1] H. Liu, E. Li, X. Liu, K. Su, and S. Zhang, “Anomaly detection with768

kernel preserving embedding,” ACM Trans. Knowl. Discovery From769

Data, vol. 15, no. 5, pp. 1–18, Oct. 2021.770

[2] W. Ding, J. Nayak, B. Naik, D. Pelusi, and M. Mishra, “Fuzzy and771

real-coded chemical reaction optimization for intrusion detection in772

industrial big data environment,” IEEE Trans. Ind. Informat., vol. 17,773

no. 6, pp. 4298–4307, Jun. 2021.774

[3] W. Ding et al., “An unsupervised fuzzy clustering approach for early775

screening of COVID-19 from radiological images,” IEEE Trans. Fuzzy776

Syst., vol. 30, no. 8, pp. 2902–2914, Aug. 2022.777

[4] J. Liu, X. Liu, Y. Yang, X. Guo, M. Kloft, and L. He, “Multiview778

subspace clustering via co-training robust data representation,” IEEE779

Trans. Neural Netw. Learn. Syst., early access, Apr. 9, 2021, doi:780

10.1109/TNNLS.2021.3069424.781

[5] Q. Feng, L. Chen, C. P. Chen, and L. Guo, “Deep fuzzy clustering—782

A representation learning approach,” IEEE Trans. Fuzzy Syst., vol. 28,783

no. 7, pp. 1420–1433, Jul. 2020.784

[6] H. Yu and Y. Wang, “Three-way decisions method for overlapping785

clustering,” in Proc. 8th Int. Conf. Rough Sets Current Trends Comput.786

Chengdu, China, 2012, pp. 277–286.787

[7] Y. Yao, “Three-way decisions with probabilistic rough sets,” Inf. Sci.,788

vol. 180, no. 3, pp. 341–353, 2010.789

[8] Y. Yao, “Tri-level thinking: Models of three-way decision,” Int. J. Mach.790

Learn. Cybern., vol. 11, no. 5, pp. 947–959, May 2020.791

[9] Y. Yao and X. Deng, “Sequential three-way decisions with probabilistic792

rough sets,” in Proc. IEEE 10th Int. Conf. Cognit. Informat. Cognit.793

Comput. (ICCI-CC), Aug. 2011, pp. 120–125.794

[10] Y. Yao, “Granular computing and sequential three-way decisions,” in795

Proc. 8th Int. Conf. Rough Sets Knowl. Technol. Halifax, NS, Canada,796

2013, pp. 16–27.797

[11] Y. Yao and C. Gao, “Statistical interpretations of three-way decisions,”798

in Proc. 10th Int. Conf. Rough Sets Knowl. Technol. Tianjin, China,799

2015, pp. 309–320.800

[12] X. Wang, P. Wang, X. Yang, and Y. Yao, “Attribution reduction based on801

sequential three-way search of granularity,” Int. J. Mach. Learn. Cybern.,802

vol. 12, no. 5, pp. 1439–1458, May 2021.803

[13] G. Lang, D. Miao, and H. Fujita, “Three-way group conflict analysis804

based on Pythagorean fuzzy set theory,” IEEE Trans. Fuzzy Syst., vol. 28,805

no. 3, pp. 447–461, Mar. 2020.806

[14] X. Yue, J. Zhou, Y. Yao, and D. Miao, “Shadowed neighborhoods based807

on fuzzy rough transformation for three-way classification,” IEEE Trans.808

Fuzzy Syst., vol. 28, no. 5, pp. 978–991, May 2020.809

[15] P. Wang, H. Shi, X. Yang, and J. Mi, “Three-way k-means: Integrating810

k-means and three-way decision,” Int. J. Mach. Learn. Cybern., vol. 10,811

no. 10, pp. 2767–2777, Oct. 2019.812

[16] H. Averbuch-Elor, N. Bar, and D. Cohen-Or, “Border-peeling clustering,”813

IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 7, pp. 1791–1797,814

Jul. 2020.815

[17] M. Du, R. Wang, R. Ji, X. Wang, and Y. Dong, “ROBP a robust border-816

peeling clustering using Cauchy kernel,” Inf. Sci., vol. 571, pp. 375–400,817

Sep. 2021.818

[18] J. C. Bezdek, W. Full, and R. Ehrlich, “FCM: The fuzzy c-means819

clustering algorithm,” Comput. Geosci., vol. 10, nos. 2–3, pp. 191–203,820

1984.821

[19] P. Lingras and C. West, “Interval set clustering of web users with rough822

K-means,” J. Intell. Inf. Syst., vol. 23, no. 1, pp. 5–16, Jul. 2004.823

[20] H. Yu and Q. Zhou, “A cluster ensemble framework based on three-way824

decisions,” in Proc. 8th Int. Conf. Rough Sets Knowl. Technol. Halifax,825

NS, Canada, 2013, pp. 302–312.826

[21] H. Yu and G. Wang, “An efficient gradual three-way decision cluster 827

ensemble approach,” in Proc. 17th Int. Conf. Inf. Process. Manage. 828

Uncertainty Knowl.-Based Syst. Cádiz, Spain, 2018, pp. 711–723. 829

[22] P. Wang and X. Yang, “Three-way clustering method based on stability 830

theory,” IEEE Access, vol. 9, pp. 33944–33953, 2021. 831

[23] H. Yu, C. Zhang, and G. Wang, “A tree-based incremental overlapping 832

clustering method using the three-way decision theory,” Knowl.-Based 833

Syst., vol. 91, pp. 189–203, Jan. 2016. 834

[24] H. Yu, P. Jiao, Y. Yao, and G. Wang, “Detecting and refining overlap- 835

ping regions in complex networks with three-way decisions,” Inf. Sci., 836

vol. 373, pp. 21–41, Dec. 2016. 837

[25] H. Yu, “A framework of three-way cluster analysis,” in Proc. Int. Joint 838

Conf. Rough Sets Olsztyn, Poland, 2017, pp. 300–312. 839

[26] H. Yu, X. Wang, G. Wang, and X. Zeng, “An active three-way clustering 840

method via low-rank matrices for multi-view data,” Inf. Sci., vol. 507, 841

pp. 823–839, Jan. 2020. 842

[27] C. Zhu, L. Ma, P. Wang, and D. Miao, “Multi-view and multi-label 843

method with three-way decision-based clustering,” in Proc. Chin. Conf. 844

Pattern Recognit. Comput. Vis. Nanjing, China, 2020, pp. 69–80. 845

[28] P. Wang and Y. Yao, “CE3: A three-way clustering method based on 846

mathematical morphology,” Knowl.-Based Syst., vol. 155, pp. 54–65, 847

Sep. 2018. 848

[29] H. Yu, L. Chen, J. Yao, and X. Wang, “A three-way clustering method 849

based on an improved DBSCAN algorithm,” Phys. A, Stat. Mech. Appl., 850

vol. 535, Dec. 2019, Art. no. 122289. 851

[30] K. Zhang, “A three-way c-means algorithm,” Appl. Soft Comput., vol. 82, 852

Sep. 2019, Art. no. 105536. 853

[31] H. Yu, L. Chen, and J. Yao, “A three-way density peak clustering method 854

based on evidence theory,” Knowl.-Based Syst., vol. 211, Jan. 2021, 855

Art. no. 106532. 856

[32] M. K. Afridi, N. Azam, and J. Yao, “Variance based three-way clus- 857

tering approaches for handling overlapping clustering,” Int. J. Approx. 858

Reasoning, vol. 118, pp. 47–63, Mar. 2020. 859

[33] H. Yu, Z. Chang, G. Wang, and X. Chen, “An efficient three-way 860

clustering algorithm based on gravitational search,” Int. J. Mach. Learn. 861

Cybern., vol. 11, no. 5, pp. 1003–1016, May 2020. 862

[34] X. Jia, Y. Rao, W. Li, S. Yang, and H. Yu, “An automatic three-way 863

clustering method based on sample similarity,” Int. J. Mach. Learn. 864

Cybern., vol. 12, no. 5, pp. 1545–1556, May 2021. 865

[35] L. Breiman, W. Meisel, and E. Purcell, “Variable kernel estimates of 866

multivariate densities,” Technometrics, vol. 19, no. 2, pp. 135–144, 1977. 867

[36] A. Rodriguez and A. Laio, “Clustering by fast search and find of density 868

peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014. 869

[37] M. Du, S. Ding, and Y. Xue, “A robust density peaks clustering algorithm 870

using fuzzy neighborhood,” Int. J. Mach. Learn. Cybern., vol. 9, no. 7, 871

pp. 1131–1140, 2018. 872

[38] M. Ester et al., “A density-based algorithm for discovering clusters 873

in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowl. 874

Discovery Data Mining Portland, OR, USA, 1996, pp. 226–231. 875

[39] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based 876

clustering based on hierarchical density estimates,” in Proc. 17th Pacific– 877

Asia Conf. Knowl. Discovery Data Mining, 2013, pp. 160–172. 878

[40] J. J. Whang, Y. Y. Hou, D. F. Gleich, and I. S. Dhillon, “Non-exhaustive, 879

overlapping clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, 880

no. 11, pp. 2644–2659, Nov. 2019. 881

[41] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component 882

analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no. 5, 883

pp. 1299–1319, Jul. 1998. 884

[42] J. Shi and J. Malik, “Normalized cuts and image segmentation,” 885

IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 886

Aug. 2000. 887

[43] M. Meilă, “Comparing clusterings—An information based distance,” 888

J. Multivariate Anal., vol. 98, no. 5, pp. 873–895, May 2007. 889

[44] L. Hubert and P. Arabie, “Comparing partitions,” J. Classification, vol. 2, 890

no. 1, pp. 193–218, 1985. 891

[45] D. Pfitzner, R. Leibbrandt, and D. Powers, “Characterization and evalu- 892

ation of similarity measures for pairs of clusterings,” Knowl. Inf. Syst., 893

vol. 19, no. 3, pp. 361–394, Jun. 2009. 894

[46] M. Lu, X.-J. Zhao, L. Zhang, and F.-Z. Li, “Semi-supervised concept 895

factorization for document clustering,” Inf. Sci., vol. 331, pp. 86–98, 896

Feb. 2016. 897

[47] F. Nie, X. Dong, L. Tian, R. Wang, and X. Li, “Unsupervised fea- 898

ture selection with constrained �2,0-norm and optimized graph,” IEEE 899

Trans. Neural Netw. Learn. Syst., vol. 33, no. 4, pp. 1702–1713, 900

Apr. 2022. 901

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: JIANGSU NORMAL UNIVERSITY. Downloaded on October 06,2022 at 12:01:04 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2021.3069424


14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[48] Y. Lu, Y.-M. Cheung, and Y. Y. Tang, “Self-adaptive multiprototype-902

based competitive learning approach: A k-means-type algorithm for903

imbalanced data clustering,” IEEE Trans. Cybern., vol. 51, no. 3,904

pp. 1598–1612, Mar. 2021.905

[49] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”906

J. Mach. Learn. Res., vol. 9, no. 11, pp. 1–27, 2008.907

Mingjing Du (Member, IEEE) received the Ph.D.908

degree in computer science from the China Uni-909

versity of Mining and Technology, Beijing, China,910

in 2018.911

He is currently an Associate Professor with912

the School of Computer Science and Technol-913

ogy, Jiangsu Normal University, Xuzhou, China.914

His research results have expounded in over ten915

publications at peer-reviewed journals. His cur-916

rent research interests include cluster analysis and917

three-way decisions. For more information, see918

https://dumingjing.github.io/919

Jingqi Zhao received the B.A. degree from Jiangsu920

Normal University, Xuzhou, China, in 2012, where921

she is currently pursuing the master’s degree with922

the School of Fine Arts.923

Her research interests include 3-D reconstruction924

and cluster analysis.925

Jiarui Sun received the bachelor’s degree from 926

Jiangsu Normal University, Xuzhou, China, in 927

2019, where he is currently pursuing the master’s 928

degree with the School of Computer Science and 929

Technology. 930

His research interests include big data analysis and 931

data stream clustering. 932

Yongquan Dong received the Ph.D. degree in 933

computer science from Shandong University, Jinan, 934

China, in 2010. 935

He is currently a Professor with the School of 936

Computer Science and Technology, Jiangsu Normal 937

University, Xuzhou, China. His research interests 938

include web information integration and web data 939

management. 940

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: JIANGSU NORMAL UNIVERSITY. Downloaded on October 06,2022 at 12:01:04 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


