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Abstract The density peaks (DP) clustering approach is a novel density-based clustering
algorithm. On the basis of the prior assumption of consistency for semi-supervised learning
problems, we further make the assumptions of consistency for density-based clustering. The
first one is the assumption of the local consistency, which means nearby points are likely to
have the similar local density; the second one is the assumption of the global consistency,
which means points on the same high-density area (or the same structure, i.e., the same
cluster) are likely to have the same label. According to the first assumption, we provide a
new option based on the sensitivity of the local density for the local density. In addition,
we redefine δ and redesign the assignation strategy based on a new density-adaptive metric
according to the second assumption. We compare the performance of our algorithm with
traditional clustering schemes, including DP, K-means, fuzzy C-means, Gaussian mixture
model, and self-organizing maps. Experiments on different benchmark data sets demonstrate
the effectiveness of the proposed algorithm.

Keywords Clustering analysis · Density peaks clustering · Sensitivity of local density ·
Density-adaptive distance

1 Introduction

Clustering perhaps is the most important and widely used method of unsupervised learning.
It can group together similar objects according to some similarity metrics [15]. As a result,
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Fig. 1 DP on the Jain data set. a Ground truth, b dc � 0.5%, c dc � 2%, and d dc � 6%

similar objects are grouped together, while dissimilar objects belong to different clusters.
Clustering has many applications in various domains, including biology, economics, and
medicine. Its applications include data mining, document retrieval, image segmentation, and
pattern classification.

A new algorithm, density peaks (DP) clustering [25], is proposed by Rodriguez and Laio.
Unlike traditional density-based clustering methods, such as DBSCAN [8] and OPTICS [1],
this algorithm starts by determining the center points of clusters. If a data point is found
that its nearest point (higher density than this data point) belongs to a certain cluster, then
allocates the data point to that cluster. This algorithm is able to detect non-spherical clusters
without specifying the number of clusters. Moreover, the DP clustering does not need to
iterate. Currently, density peaks clustering algorithm is used in outlier detection [3], image
processing [5, 18], and document processing [27, 35]. For example, inspired by this, Ma et al.
[19] propose the LED algorithm, which is based on Structural Clustering, which converts
structural similarity between vertices to weights of network. However, there are still some
shortcomings. For example, the DP clustering only has taken the global structure of data
into account, which leads to missing many clusters. In order to overcome this problem, Du
et al. [7] propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which
introduces the idea of k nearest neighbors (KNN) into the DP clustering and has another
option for the local density computation. The DP clustering performs not well when the DP
clustering finds some pseudocluster centers. In order to overcome this difficulty, Zhang and
Li [34] propose an extension of CFSFDP (E_CFSFDP). This algorithm introduces the idea
of an agglomerative hierarchical clustering algorithm, CHAMELEON, into the original DP
clustering. However, the DP clustering algorithm cannot find the correct number of clusters
automatically. In order to overcome a similar problem, Liang and Chen [17] propose the 3DC
clustering based on the divide-and-conquer strategy and the density-reachable concept. And
then they integrate this scheme with the idea of divisive hierarchical clustering algorithms.
To improve the running speed of DP algorithm, Xu et al. [30] propose a novel approach based
on grid, called density peaks clustering algorithm based on grid (DPCG).

The DP clustering algorithm performs excellent clustering results on some data sets, but
there still exist some other situations when it obtains very poor results. Specifically, Fig. 1
shows that the DP clustering does not perform well on the Jain data set [13]. Data points have
two clusters of different densities. Each black point represents a cluster center obtained byDP,
as shown in Fig. 1. Obviously, two center points obtained by DP are in the same cluster which
has higher density compared with the other cluster. When clusters have different densities on
the data set, the main reason for a poor result obtained by DP obtains is that the definition of
the local density and the choice of the cluster centers are both based on the assumption that
all data points in different clusters have the similar density. In the real world, however, there
exist many situations that the real-world data have clusters of different densities.

In addition, the assignation strategy of the original DP clustering algorithm is applicable
only to some data sets with simple structure. The original DP method is not able to find
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Fig. 2 Clustering results of the two-circles data set. a Ground truth and b mis-assignation

clusters of twisted or curved structure. For example, the two clusters in the Two-circles data
set cannot be found correctly. As shown in Fig. 2b, the black points represent the cluster
centers obtained by the DP method, and the red point has the third-highest local density. It
can be easily seen that the red point should belong to the outer circle, but this data point is
found that its nearest point, with higher local density compared with itself, belongs to the
inner circle rather than the outer circle. Obviously, a poor clustering result is mainly due to
its assignation strategy. In addition, another hidden reason is the computation of δ.

In order to overcome the first problem that DP cannot generate the optimal structure of
clusters on some data sets that have clusters of different densities, we define the sensitivity of
the local density and then propose another option for the local density based on the concept
of the sensitivity of the local density. In addition, we introduce the density-adaptive metric
into the computation of δ and the assignation strategy.

The rest of this paper is organized as follows. In Sect. 2, we describe the principle of
the DP clustering method. In Sect. 3, we make a detailed description of DP-DA. In Sect. 4,
we present experimental results on synthetic data sets and real-world data sets, and then
we analyze the performance of the proposed algorithm. Finally, some conclusions and the
intending work are given in the last section.

2 Density peaks clustering

2.1 Notations

Let X � {x1, x2, . . . , xN } denote a data set of N data objects, where for each i , 1 ≤ i ≤ N ,
xi with M attributes. Therefore, for each i , 1 ≤ i ≤ N , and for j , 1 ≤ j ≤ M let xi, j be the
jth attribute of xi . Let d

(
xi , x j

)
denote the Euclidean distance between the object xi and the

object x j . The mathematical expression is as follows:

d
(
xi , x j

) � ∥∥xi − x j
∥∥
2 . (1)

2.2 The original algorithm

The DP clustering proposed by Rodriguez and Laio is a new density-based clustering algo-
rithm. Unlike DBSCAN, the DP clustering finds the cluster centers before data points are
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assigned. Determining the cluster centers is of vital importance to guarantee good clustering
results. Because it determines the number of the clusters and affects the assignation indirectly,
obviously, the key to this algorithm is how to determine the cluster centers. Rodriguez and
Laio propose the decision graph of the ρ and δ axis. ρi denotes the local density ρi of each
point xi , and δi denotes its distance from points with higher density. The authors suggest
that the cluster centers have two important properties. One is that the cluster centers are sur-
rounded by neighbors with a lower local density. The other is that they have relatively larger
distance to the points with higher density. In the following, we will describe the calculation
of ρi and δi in much more detail.

DP represents data objects as points in a space and adopts a distancemetric, such as formula
(1), as a dissimilarity between objects. In theDPmethod, dc is the only input parameter, which
is a cutoff distance.

The local density ρi of a point xi is defined as

ρi �
∑

j

χ
(
d

(
xi , x j

) − dc
)

χ (x) �
{
1, x < 0
0, x ≥ 0

, (2)

ρi is simply defined as the number of points that are closer than dc to point xi . Besides, there
is an alternative definition of the local density in the code presented by Rodriguez and Laio.
If the former is called a hard threshold, the latter will be called a soft threshold. Authors
adopt a Gaussian kernel function to estimate the local density ρi , as follows:

ρi �
∑

j

exp

(

−d
(
xi , x j

)2

d2c

)

, (3)

If formula (2) is the definition of the hard threshold, formula (3) is the definition of the soft
threshold.

The calculation of the delta value, again, is quite simple. The minimum distance between
the point of xi and any other points with higher density, denoted by δi , is defined as

δi �
⎧
⎨

⎩

min
j :ρi<ρ j

(
d

(
xi , x j

))
, if ∃ j s.t. ρi < ρ j

max
j

(
d

(
xi , x j

))
, otherwise

. (4)

When the local density and the delta value for each point have been calculated, this method
identifies the cluster centers by searching anomalously large parameters ρi and δi . On the
basis of this idea, cluster centers always appear on the upper-right corner of the decision
graph. After cluster centers have been found, the DP clustering assigns remaining points to
the same cluster as its nearest neighbors with higher density.

3 The proposed algorithm

On the basis of the prior assumption of consistency for semi-supervised learning problems
[37], we make the assumptions of consistency for density-based clustering. The first one
is the assumption of the local consistency, which means nearby points are likely to have
the similar local density; the second one is the assumption of the global consistency, which
means points on the same high-density area (or the same structure, i.e., the same cluster) are
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likely to have the same label. We utilize some prior assumptions to improve the clustering
performance of the original DP clustering algorithm.

3.1 New local density

When different clusters have different densities, the DP clustering does a poor job of finding
the clusters. This situation is particularly acute in the case that the clusters have irregularly
distributed data. Due to the original local density computation, the DP clustering can find
more than one density peak for one cluster that has higher density than the others. In order
to overcome this problem, we redefine the local density using an idea of the sensitivity of the
local density.

We introduce a new local density computation based on the sensitivity of the local density
in further detail as below.

Firstly, ρ′
i of point xi is defined as:

ρ′
i � exp

⎛

⎝−
⎛

⎝1

k

∑

x j∈kNN(xi )

d
(
xi , x j

)2
⎞

⎠

⎞

⎠ , (5)

where kNN (xi ) denotes k nearest points to xi according to formula (1). The most important
variable in formula (5), k is �p · N	, where p is a percentage, and N denotes the number of
data points in the data sets. �·	 is a ceiling function. This means that p is one of the most
important parameters of the proposed algorithm.

We define the concept of the sensitivity of the local density, LSi, j , that indicates that the
absolute value of the difference between ρ′

i of point xi and ρ′
j of point x j divided by ρ′

i , where
x j ∈ kNN (xi ). Let ε denotes the threshold for the sensitivity of the local density. When the
sensitivity of the local density LSi, j of xi and x j (x j ∈ kNN (xi )) is less than the threshold,
we refer to point x j as one of the “real” k nearest neighbors to point xi . More formally, Δi, j

can be expressed as:

Δi, j � LSi, j − ε �
∣∣∣ρ′

i − ρ′
j

∣∣∣ /ρ′
i − ε,

where x j ∈ kNN (xi ) . (6)

The “real” k nearest neighbors of xi , denoted by ̂kNN (xi ), is defined as

̂kNN (xi ) � {
x j ∈ kNN (xi ) |Δi, j ≤ 0

}
. (7)

The local density of a point xi , denoted by ρi , is defined as

ρi �
∑

x j∈̂kNN(xi )

ψ
(
Δi, j

)

ψ (x) �
{
1, x ≤ 0
0, x > 0

. (8)

3.2 New density-adaptive metric

The selection of the cluster centers depends not only on the local density ρi of each point xi
but also on its distance δi from points with higher density. However, the original calculation
of δ uses the Euclidean distance which only reflects the local structure of data. As shown
in Fig. 3, d (a, b) > d (a, c). However, it is obvious that points a and b belong to the same
cluster, and points a and c belong to different clusters. By the definition of the clustering,
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Fig. 3 Jain data set

points a and b aremore similar than points a and c. To be specific, in terms of theDP clustering
algorithm, the traditional distance metrics, such as the Euclidean metric, share some similar
disadvantages. Assuming that point a has the highest local density, point b and point c tie for
the second highest local density. According to the Euclidean metric, δc < δb, so that points a
and b are selected as the cluster centers. But in fact, they belong to the same class. It follows
that the traditional metrics that only take the local structure of data into account may lead
to producing incorrect cluster centers. In addition, they may also lead to a misclassification.
Assuming that points b and c are the center points of the two classes, and ρa is only slightly
less than ρb and ρc. By the assignation strategy of the original algorithm, point a is assigned to
the cluster that point c belongs to. In [28], in order to calculate the similaritymatrix of Spectral
Clustering (SC), Wang et al. first propose the concept of the density-adaptive distance. In
order to overcome these difficulties, we propose another option for the computation of δ and
a new assignation using a new density-adaptive metric redesigned by us.

Intuitively, the data of within-cluster tend to be distributed in a relatively high-density
area, while the density of between-cluster is (externally) lower. Specifically, we want that the
distance between points a and c is longer than the distance between points a and b. In other
words, the path length in a low-density area is magnified, or the path length in a high-density
area is shortened, or both. In fact, we expect to be able to design a distance metric: If a path
connecting two points exists in a high-density area, this path will be given a relatively short
distance; or if a path connecting two points passes through a low-density area, this path will
be given an externally long distance [14, 32].

Similar to the path-based distance, the proposed density-adaptive distance reflects the idea
that no matter how far the physical distance between two points is, they can be considered
as in one cluster if they are connected by a set of successive points in dense regions.

Firstly, the data points, X � {x1, x2, . . . , xN }, can be regarded as the vertices in an
undirected weighted graph, G � (X, E), where E denotes an edge set. To be consistent
with the aforementioned notations, we still use xi to represent a vertex on the graph G in the
following formulas. Then, the density-adjustable line segment length is defined as:

L
(
xi , x j

) � exp
(
α · d (

xi , x j
))

, (9)
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where α > 0 is called the scalability factor. The length of density-adjustable line segment
can be scaled by adjusting the scalability factor.

Based on the length of the density-adjustable line segment, wewill introduce the definition
of the density-adaptive metric. Pi j denotes the set of all paths connecting vertices xpi and
xp j on graph G, and τ is one of all paths Pi j . |τ | is the length of the path τ . More formally,
Pi j can be expressed as:

τ � {
xpi , . . . , xpk−1 , xpk , xpk+1 , . . . , xp j

} ∈ Pi j , (10)

where
(
xpk , xpk+1

) ∈ E (1 ≤ k ≤ |τ | − 1) .

Finally, a new density-adaptive distance is defined as:

dds
(
xi , x j

) � min
τ∈Pi j

k�|τ |−1∑

k�1

L
(
xpk , xpk+1

)
. (11)

Note that L
(
xpk , xpk+1

)
is the density-adjustable line segment length of two adjacent

points along path τ ∈ Pi j . In order to calculate density-adaptive distance, Floyd’s algorithm
is used. Firstly, k nearest points for each point are calculated according to formula (9).
Then, we construct the k nearest-neighbors graph by linking all neighbor points. And each
edge is weighted with the density-adjustable line segment length between the corresponding
linked points. The density-adaptive distance between two points is calculated by the sum of
the density-adjustable line segment lengths along the shortest path linking both points. The
shortest path is computed by Floyd’s algorithm.

Similar to the Euclidean distance metric, the proposed density-adaptive distance metric is
symmetric, non-negative, and reflexivity. Moreover, the proposed distance has the following
properties:

(1) ∀xi , x j , xk ∈ X, we have dds
(
xi , x j

) ≤ dds (xi , xk) + dds
(
x j , xk

)
, i.e., the proposed

distance metric is triangle inequality.
(2) xi , x j are in the same dense region while xl , xk are in different dense regions, then with

very high probability we have dds
(
xi , x j

)
< dds (xl , xk) .

Use the previous example in Fig. 3 again. The points a and b exist in the same high-density
area, but the points a and c are separated by a low-density area. In Fig. 4, the values in the
bracket indicate the Euclidean distance, and those outside the bracket indicates the density-
adaptive distance. The Euclidean distance between a and b is 4.31, and the Euclidean distance
between a and c is 2.52. The former is about 1.7 times as long as the latter. When α � 1, the
density-adaptive distance between a and b is 11.99, and the density-adaptive distance between
a and c is 12.38. It is obvious that the density-adaptive distance between a and b is shorter than
that between a and c. Supposing

{
a, xp2 , xp3 , . . . , xpk , b

}
is the shortest path linking a and

b, we have dds (a, b) � L
(
a, xp2

)
+ L

(
xp2 , xp3

)
+ · · · + L

(
xpk , b

)
in terms of the proposed

distance metric. Note that dds (a, b) � 11.9913 < L (a, b) � exp (4.3073) � 74.2398.
That is to say, the density-adaptive distance between points a and b is shorter than the
density-adjustable line segment length between them. Nevertheless, dds (a, c) � 12.3845 ≈
L (a, c) � exp (2.5164) � 12.3839 (Since approximate value is used in the exp() operation,
dds (a, c) is approximately equal to L (a, c)). As you can see from the above example, our
proposed distance metric has an effect of squeezing the distance in high-density regions,
particularly in the complex manifolds. The proposed distance metric relies primarily on the
short path. And the short path depends on data distribution and is adjustable with the data
density. Thus, the proposed distance metric is density adaptive.
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Fig. 4 New density-adaptive distance and Euclidean distance

δi is also redefined, as follows:

δi �
⎧
⎨

⎩

min
j : ρi<ρ j

(
dds

(
xi , x j

))
, if ∃ j s.t. ρi < ρ j

max
j

(
drmds

(
xi , x j

))
, otherwise

, (12)

where ρi , ρ j (1 ≤ i, j ≤ N ) are obtained according to formula (8).

3.3 The description of the proposed algorithm

In this sub-section, we introduce the ideas of Sects. 3.1 and 3.2 into the DP clustering
algorithm. The following algorithm is a summary of the proposed algorithm.

Algorithm. The proposed algorithm

Inputs:

The samples X ∈ RN×M

The parameter p, ε, α

Outputs:

The label vector of cluster index: y ∈ RN×1

Method:

Step 1: Calculate distance matrix according to formula (1)

Step 2: Calculate ρi for point xi according to formula (8)

Step 3: Calculate density-adaptive distance according to formula (11)

Step 4: Calculate δi for point xi according to formula (12)

Step 5: Plot decision graph and select cluster centers

Step 6: Assign each remaining point to the cluster, which has its nearest neighbor with higher local density
according to formula (11)

Step 7: Return y
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3.4 Performance analysis

The computational complexity is an important indicator of the algorithm. If the complexity
is too high, it will limit the application of the algorithm in complex scenes [24]. Now, we give
the time complexity of the proposed algorithm. To be consistent with the aforementioned
notations, we assume that N is the number of objects in the data set; M is the number
of attributes. The computational complexity of the similarity matrix is O

(
N 2

)
. O

(
N 2

)
is

needed to compute the new local density. We calculate the density-adaptive distance by using
Floyd’s algorithm. The time complexity of Floyd’s algorithm is O

(
N 3

)
. In addition, the cost

of the sorting process with quick sort is O (N log N ). We take no account of the time of
determining the cluster centers. Considering the complexity in the assignment procedure
is O (N ), the total time cost of the proposed algorithm is O

(
N 2

)
+ O

(
N 2

)
+ O

(
N 3

)
+

O (N log N ) + O (N ) ∼ O
(
N 3

)
.

4 Experiments and results

In this section, experimental results show the clustering performance of our algorithm. To
achieve this, we use two kinds of data (1) some synthetic data sets and (2) 7 real-world data
sets, the Wisconsin Prognostic Breast Cancer (WPBC) data set [29], the Ionosphere data set
[26], the Dermatology data set [10], the Wisconsin Diagnostic Breast Cancer (WDBC) data
set [21], the Titanic data set, the Waveform Database, and Magic data set. And all of the
real-world data sets are obtained from the UCI repository.

We compare the proposed algorithm with the original DP clustering algorithm and the
classical clustering algorithms, such as, K-means [20], fuzzy C-means (FCM) [2], Gaussian
mixture model (GMM) [6], and self-organizing maps (SOM) [16], in some evaluations of
cluster quality. These evaluations include clustering accuracy (ACC), normalized mutual
information (NMI), adjusted Rand index (ARI), and F1 Score [12, 31].

We conduct experiments on a desktop computer with a core i7 DMI2-Intel 3.6 GHz
processor and 16 GB RAM running MATLAB 2013A. In the DP clustering algorithm, the
range of value of the parameter dc is restricted to a set [0.1%0.5%1%2%4%6%]. In the FCM
method, the range of value of the parameterm is [1.2 1.5 2.0 2.5 3.0]. In the GMM algorithm,
in order to ensure that the estimates are positive-definite, a non-negative regularization value,
λ, is added to the diagonal of each covariance matrix. The range of value of the parameter
λ is [0 0.01 0.1]. In the proposed algorithm, the range of value of the parameter p is [0.1%
0.5% 1% 2% 4% 6%], and we select the parameter ε from [0.01 0.05 0.1 0.2 0.5] or [1% 5%
10% 20% 50%]. The parameter p and the parameter ε are selected based on the clustering
performance. In almost all our experiments (both on synthetic data sets and on real-world
data sets), we set a default value of α � 1. In order to avoid trapping into local optimum,
K-means, FCM, GMM, and SOM are all repeated 10 times in each corresponding parameter
value. On synthetic data sets, for demonstration purposes, we only present the best results
in terms of clustering accuracy. On real-world data sets, we present the mean value and the
standard deviation in the four evaluations.

In order to avoid clustering bias due to different scales in the attributes, a data normalization
method is performed during the data preprocessing step. The min–max normalization is the
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simplest method that is rescaling the range of attributes to scale the range in [0, 1]. The
min–max normalization function is given by [11, 22, 36]

x ′ � x − minA
maxA −minA

, (13)

where x ′ and x are the original and the normalized values, respectively; maxA and minA are
the maximal and the minimal values of an attribute A, respectively.

4.1 Experiments on synthetic data sets

We test the performance of the classical clustering algorithms and our algorithm on synthetic
data sets. The main reason why we use synthetic data sets to validate clustering algorithms
is that the structures of synthetic data sets can be controlled. In the following sub-sections,
we introduce two kinds of synthetic data sets to validate our algorithm. The first category,
the data sets with clusters of different densities, validates that the new local density helps
to detect correct cluster centers. The second category, the data sets with clusters of twisted,
folded, or curved data distribution, validates that the new δ and the new assignation strategy
help to detect clusters.

4.1.1 Synthetic data sets

Some classical algorithms and the proposed algorithm are tested by ten data sets whose
geometric shapes are shown in Fig. 5. The first data set, the Jain data set, is a kind of two
moons data set with 2 clusters of 373 points. The second data set is the DD data set which
has 3 clusters of different densities. The third data, the multi-scale data set [33], consists of 3
clusters that are of 238 points. The fourth data set, the Half-kernel data set, contains 2 clusters
of 1000 points. The fifth data set, the Two-circles data set [23], contains 2 clusters of 400
points. The sixth data set, the A1 data set [33], contains 3 clusters of 299 points. Except for
internal cluster, A1 looks just the same as three circles. The seventh data set, the Four-lines
data set [33], contains 4 clusters of 512 points. The eighth data set, the A3 data set [33],
contains 3 clusters of 266 points. The last data set, Crescent-full-moon data set, contains 2
clusters of 1000 points. The first four data sets are all of clusters of different densities. Other
data sets are of clusters of twisted, folded, or curved data distribution. We demonstrate the
power of our algorithm on these test cases. The details of these data sets are listed in Table 1.

4.1.2 The performance of clustering results on synthetic data sets

Two moons data set is widely used in some manifold learning algorithms and clustering
algorithms [4]. Jain data set is a kind of two moons data set. Figure 6 shows comparison
against the classical clustering algorithms on the Jain data set. On the Jain data set, the DP
clustering is not able to find clusters whatever the value of the parameter dc is. When the
parameter dc is fixed at 0.5%, the DP clustering obtains the best result on this data set, as
shown in Fig. 6b. Other methods are repeated ten times in each corresponding parameter
value. We select the best one in all clustering results. Similarly, they also fail to find clusters,
as shown in Fig. 6c–f. Unlike DP, our method can effectively find two cluster centers and
further obtains the correct clustering result.

The DD data set is of 3 clusters that have different densities. Figure 7 shows the clustering
results on this data set. The DP method produces two cluster centers in the highest density
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Jain data set DD data set Multi-scale data set

Half-kernel data set Two-circles data set A1 data set

Four-lines data set A3 data set Crescent-full-moon data 
set

Fig. 5 Visualization of two-dimensional data sets

Table 1 Details of synthetic data
sets

Data sets Cluster Dimension Number

Jain 2 2 373

DD 3 2 99

Multi-scale 3 2 238

Half-kernel 2 2 1000

Two-circles 2 2 400

A1 3 2 299

Four-lines 4 2 512

A3 3 2 266

Crescent-full-moon 2 2 1000

cluster, as shown in Fig. 7b. The rest of the comparative methods are able to find clusters
except FCM, as shown in Fig. 7c–f. That is, because these algorithms are adept at detecting
spherical clusters. By comparison with the DP clustering algorithm, the proposed algorithm
is able to detect these clusters in all the cases.
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Fig. 6 Clustering results on the Jain data set. aOurmethod p � 1%, ε � 0.01, bDP dc � 0.5%%, cK-means,
d FCM m � 2.0, e GMM λ � 0.01, and f SOM

Fig. 7 Clustering results on the DD data set. a Our method p � 2%, ε � 0.01, b DP dc � 0.5%, c K-means,
d FCM m � 2.0, e GMM λ � 0, and f SOM

The multi-scale data set has two quadrilateral clusters and one circular cluster. Figure 8
shows the clustering results on this data set. The densities of the two quadrilateral clusters
are much higher than that of the circular cluster. As shown in Fig. 8b, the DP clustering
method cannot even find correct cluster number and can only generate two clusters on this
data set. Other traditional methods also perform poorly, as shown in Fig. 8c–f. Owing to the
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Fig. 8 Clustering results on the multi-scale data set. a Our method p � 2%, ε � 0.01, b DP dc � 1%, c
K-means, d FCM m � 2.0, e GMM λ � 0, and f SOM

new local density and the new assignation strategy, the proposed method does an excellent
job in clustering this data set.

The Half-kernel data set has two clusters of different densities. Figure 9 shows the clus-
tering results on this data set. The DP clustering cannot find the optimal structure of clusters,
as shown in Fig. 9b. Despite other methods fail to obtain good results, our algorithm does an
excellent job in clustering this data set.

As shown in Figs. 6, 7, 8, and 9, the proposed algorithm gets better clustering perfor-
mance compared with these classical clustering algorithms in almost all case. Especially,
the proposed algorithm gets extraordinarily favorable performance compared with the DP
clustering algorithm for the above data sets. This is because the concept of the sensitivity
of the local density is introduced into the calculation of the local density. The original algo-
rithm is improved in finding the cluster centers for some data sets of different densities. The
experimental results illustrate our algorithm is very effective in finding clusters of arbitrary
density.

The Two-circles data set contains two circular clusters, where the density of the inner
cluster is slightly higher than that of the outer cluster. It is easy to see why the DP method
does a poor job. Firstly, we introduce the new local density into the original DP method,
and it can find two center points in different clusters. However, it still cannot generate the
optimal structure of clusters, as shown in Fig. 2b. Thus, our algorithm further improves the
calculation of δ and the assignation strategy according to a new density-adaptive distance.
Figure 10 shows that the proposed algorithm gets extraordinarily favorable performance
compared with other algorithms.

Analogous to the Two-circles data set, the A1 data set adds a spherical cluster on the
basis of that data set. Figure 11 shows the clustering results on this data set. The proposed
algorithm clearly outperforms these traditional clustering methods on this data set.
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Fig. 9 Clustering results on the Half-kernel data set. a Our method p � 2%, ε � 0.01, b DP dc � 2%, c
K-means, d FCM m � 2.5, e GMM λ � 0, and f SOM

Fig. 10 Clustering results on the two-circles data set. a Our method p � 6%, ε � 0.1, b DP dc � 2%, c
K-means, d FCM m � 2.0, e GMM λ � 0, and f SOM

The Four-lines data set contains four linear clusters. GMM and our algorithm perform
slightly better, as shown in Fig. 12.

The A3 data set is a challenging data set. The proposed method does an excellent job in
clustering this data, as shown in Fig. 13.

Figure 14 shows that our method can effectively find clusters.
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Fig. 11 Clustering results on the A1 data set. a Our method p � 4%, ε � 0.01, b DP dc � 4%, c K-means,
d FCM m � 3.0, e GMM λ � 0, and f SOM

Fig. 12 Clustering results on the Four-lines data set. a Our method p � 6%, ε � 0.01, b DP dc � 0.5%, c
K-means, d FCM m � 3.0, e GMM λ � 0, and f SOM

The originalDP clusteringmethod is not able to detect clusters of twisted, folded, or curved
data distribution. Based on a new local density, we also introduce a new density-adaptive
metric into the calculation of δ and the assignation strategy. As shown in Figs. 10, 11, 12, 13,
and 14, on these data sets with different manifolds, this metric squeezes the distance between
data points in the same cluster (i.e., high-density area). From a different perspective, the
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Fig. 13 Clustering results on the A3 data set. a Our method p � 4%, ε � 0.01, b DP dc � 6%, c K-means,
d FCM m � 3.0, e GMM λ � 0, and f SOM

Fig. 14 Clustering results on the Crescent-full-moon data set. a Our method p � 1%, ε � 0.01, b DP
dc � 1%, c K-means, d FCM m � 2.0, e GMM λ � 0, and f SOM

distance between cluster centers is comparatively magnified in disguise. In other words, the
values of δ of the center candidates become larger contributing to more prone selecting the
“real” centers. This is desirable for high-quality clustering. The proposed algorithm clearly
outperforms these classical clustering algorithms through most of the cases, as shown in
Figs. 10, 11, 12, 13, and 14.
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Table 2 Details of UCI data sets Data sets Cluster Dimension Number

WPBC 2 33 198

Ionosphere 2 34 351

Dermatology 6 34 366

WDBC 2 30 569

Titanic 2 3 2201

Waveform 3 21 5000

Magic 2 10 19,020

4.2 Experiments on real-world data sets

The performance of the proposed algorithm is compared with some classical methods, such
as DP, K-means, FCM, GMM, and SOM on 7 real-world data sets.

4.2.1 Real-world data sets

The real-world data sets used in the experiments are all from the UCI Machine Learning
Repository. On the Wisconsin Prognostic Breast Cancer (WPBC) data set, all objects are
divided into two classes, “recur” (class #1), including 151 objects, and “non-recur” (class #2),
including 47 objects. According to its class distribution, this data set is a typical imbalanced
data set. Its imbalance ratio [9] value is higher than 3. The Ionosphere data set is classified
into two classes: good (class #1), including 225 objects, and bad (class #2), including 126
objects. Its imbalance ratio value is about 1.9. The Dermatology data set is classified into six
classes: psoriasis (class #1), including 112 objects; seborrheic dermatitis (class #2), including
61 objects; lichen planus (class #3), including 72 objects; pityriasis rosea (class #4), including
49 objects; chronic dermatitis (class #5), including 52 objects; and pityriasis rubra pilaris
(class #6), including 20 objects. The Wisconsin Diagnostic Breast Cancer (WDBC) data set
is classified into two classes: benign (class #1), including 357 objects and malignant (class
#2), including 212 objects. The Titanic data set is classified into two classes: survivor (class
#1), including 711 objects and victim (class #2), including 1490 objects. Its imbalance ratio
value is higher than 2. It is to be observed that the Waveform data set is a sample of 5000
objects obtained from the original data generator. Thus, the Waveform data set consists of
5000 objects with 21 attributes and with continuous values between 0 and 6. Each instance is
generated added noise (mean 0, variance 1) in each attribute, and each class is generated from
a combination of 2 of 3 “base” waves. It is classified into three classes: class #1, including
1657 objects; class #2, including 1647 objects; and class #3, including 1696 objects. The
Magic data set is classified into two classes: gamma (class #1), including 12,332 objects and
hadron (class #2), including 6688 objects. Its imbalance ratio value is about 1.8. The details
of these data sets are listed in Table 2.

4.2.2 The performance of clustering results on real-world data sets

In Table 3, we list the performance of our proposed algorithm, DP, K-means, FCM, GMM,
and SOM on the WPBC data set. In Table 3, the symbol means that the algorithm cannot
work in the data set (the reasons are explained later). In the following tables, the numbers
highlighted in bold indicate that the corresponding algorithm has the best performance in
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Table 3 Performance comparison of the proposed algorithm on the WPBC data set

Algorithms ACC NMI ARI F1

Our method
p � 6% , ε � 0.01

0.7525 0.0552 0.1593 0.7200

DP – – – –

K-means
k � 2

0.6010±0 0.0241±0 0.0351±0 0.5763±0

FCM
m � 1.2

0.6010±0 0.0209±0 0.0340±0 0.5771±0

GMM
λ � 0

0.5843±0.0451 0.0101±0.0068 0.0023±0.0259 0.5911±0.0296

SOM
k � 2

0.6010±0 0.0241±0 0.0351±0 0.5763±0

Table 4 Performance comparison of the proposed algorithm on the Ionosphere data set

Algorithms ACC NMI ARI F1

Our method
p � 1% , ε � 0.05

0.8205 0.2894 0.3953 0.7515

DP – – – –

K-means
k � 2

0.7123±0 0.1312±0 0.1776±0 0.6049±0

FCM
m � 1.2

0.7094±0 0.1264±0 0.1727±0 0.6028±0

GMM
λ � 0.1

0.6590±0.0799 0.0802±0.0544 0.0802±0.0684 0.6659±0.0666

SOM
k � 2

0.7117±0.0012 0.1303±0.0020 0.1766±0.0021 0.6045±0.0009

terms of its corresponding evaluation (i.e., the corresponding column). As shown in Table 3,
the values of the quality measures of the clusters formed by K-means, FCM, and SOM are
close, within a difference of 0.001. However, GMM performs slightly worse. Table 3 shows
the results of our algorithm are significantly better than those obtained by other methods. It
is worth mentioning that the proposed algorithm is at least 15% more accurate than other
methods. The ARI value of our method is one order of magnitude higher than those of other
methods.

Table 4 shows comparison against the classical clustering algorithms on the Ionosphere
data set. Similar to the results on the WPBC data set, the values of the quality measures of
the clusters formed by K-means, FCM, and SOM are close, within a difference of 0.01 and
GMM performs slightly worse. As we can see, the clustering results obtained by our method
are superior to those obtained by other methods. The ACC value and the F1 value of the
proposed algorithm are about 10% higher than those of other methods. The NMI value and
the ARI value of the proposed algorithm are twice more than those of other methods.

In Table 5, we list the performance of our proposed algorithm, DP,K-means, FCM,GMM,
and SOM on the Dermatology data set. As can be seen in Table 5, our algorithm outperforms
against the competitors in terms of the ACC. Both the ARI and theF1 of the proposedmethod
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Table 5 Performance comparison of the proposed algorithm on the Dermatology data set

Algorithms ACC NMI ARI F1

Our method
p � 6% , ε � 0.5

0.8579 0.8022 0.7455 0.7921

DP – – –

K-means
k � 6

0.6809±0.1041 0.8215±0.0863 0.6582±0.1341 0.7303±0.1007

FCM
m � 1.5

0.7448±0.0052 0.7733±0.0039 0.6955±0.0151 0.7511±0.0134

GMM
λ � 0.01

0.6929±0.0594 0.7830±0.0510 0.6552±0.0882 0.7240±0.0713

SOM
k � 6

0.7361±0.0039 0.8765±0.0005 0.7152±0.0012 0.7717±0.0010

Table 6 Performance comparison of the proposed algorithm on the WDBC data set

Algorithms ACC NMI ARI F1

Our method
p � 4%, ε � 0.01

0.9508 0.7029 0.8116 0.9125

DP – – – –

K-means
k � 2

0.9279±0 0.6115±0 0.7302±0 0.8702±0

FCM
m � 3.0

0.9367±0 0.6434±0 0.7614±0 0.8889±0

GMM
λ � 0

0.9186±0.0314 0.5925±0.0874 0.7033±0.0998 0.8592±0.0493

SOM
k � 2

0.9281±0.0006 0.6123±0.0025 0.7308±0.0019 0.8771±0.0009

are slightly better than those of other solutions. However, on the Dermatology data set, SOM
performs the best job in terms of the NMI.

Table 6 lists the clustering results on the WDBC data set. All methods (except for DP)
generate great results. By comparisonwith these classicmethods (DP,K-means, FCM,GMM,
and SOM), the proposed algorithm shows a small advantage in terms of the quality measures
(ACC, NMI, ARI, and F1) on this data set.

In Table 7, we list the performance of our proposed algorithm, DP,K-means, FCM,GMM,
and SOMon the Titanic data set.K-means, SOM, and GMMhave similar performance. FCM
and our method have the same performance, and they perform better than other methods on
the Titanic data set.

Table 8 lists the clustering results on the Waveform data set. Due to including class noise
and attribute noise, results fromTable 8 illustrate that allmethods cannot generate an excellent
structure on this data set. Comparedwith other methods, our method shows a small advantage
in terms of the most quality measures (ACC, NMI and ARI). While, it is slightly inferior to
GMM in terms of F1.
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Table 7 Performance comparison of the proposed algorithm on the Titanic data set

Algorithms ACC NMI ARI F1

Our method
p � 4%, ε � 0.05

0.7760 0.1569 0.2747 0.7164

DP – – – –

K-means
k � 2

0.7343±0.0393 0.1006±0.0652 0.1813±0.1058 0.6908±0.0192

FCM
m � 3.0

0.7760±0 0.1569±0 0.2747±0 0.7164±0

GMM
λ � 0.01

0.7448±0.0458 0.1114±0.0734 0.1981±0.1232 0.7071±0.0047

SOM
k � 2

0.7506±0 0.1341±0 0.2348±0 0.6731±0

Table 8 Performance comparison of the proposed algorithm on the Waveform data set

Algorithms ACC NMI ARI F1

Our method
p � 0.5%, ε �
0.01

0.6612 0.3715 0.2934 0.5306

DP
dc � 4%

0.5446 0.2535 0.2657 0.5223

K-means
k � 3

0.5010±0.0004 0.3632±0 0.2535±0 0.5037±0

FCM
m � 2.5

0.4930±0 0.3291±0 0.2436±0 0.4974±0

GMM
λ � 0

0.6037±0.0096 0.2539±0.0112 0.2676±0.0220 0.5624±0.0139

SOM
k � 3

0.5014±0.0010 0.3632±0 0.2536±0 0.5037±0

Table 9 shows comparison against the classical clustering algorithms on the Magic data
set. Aswe can see, the clustering results obtained by ourmethod are superior to those obtained
by other methods.

In Tables 3, 4, 5, 6, and 7, we can see that DP cannot work on the corresponding data set.
The main reason is that we cannot find the optimal cluster number based on DP’s decision
graph on these data sets. In the case that DP deals with data in the Titanic set, only one
cluster center is found by DP with different dc on decision graph, as shown in Fig. 15. It is
unacceptable that we are incapable of making the right choices.

In most of the cases, our algorithm obtains better clustering performance compared with
these classical clustering algorithms, especially to theDP clustering algorithm.We conjecture
that the main reason is that most of experimental data sets are imbalanced and our method is
suitable for processing some specific data sets with clusters of different densities. We assume
that a data set is imbalanced when its imbalance ratio value is higher than 1.8. Therefore, in
this paper, the imbalanced data sets include WPBC, Ionosphere, Titanic, and Magic. These
types of sets suppose a new challenging problem for these traditional methods (DP,K-means,
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Table 9 Performance comparison of the proposed algorithm on the Magic data set

Algorithms ACC NMI ARI F1

Our method
p � 1%, ε � 0.01

0.6612 0.0323 0.0831 0.6613

DP
dc � 0.5%

0.5173 0.0251 -0.0133 0.5561

K-means
k � 3

0.5917±0.0005 0.0159±0 0.0317±0 0.5420±0

FCM
m � 1.2

0.6073±0 0.0228±0 0.0438±0 0.5488±0

GMM
λ � 0

0.6292±0 0.0269±0 0.0597±0 0.5705±0

SOM
k � 3

0.5915±0.0010 0.0159±0.0003 0.0316±0.0007 0.5418±0.0005

Fig. 15 DPC on Titanic set with
different values of dc

FCM, GMM, and SOM). For these four data sets, we try to calculate the data density in every
class. We adopt the simplest method to estimate the density in a class Ci :

den (Ci ) � |Ci |
Vi

, (14)

where |Ci | is the number of objects in the class Ci and Vi � ∏
j DOM

i
j is the volume of the

attribute domains in the class Ci . DOMi
j � maxiA j

(
x

′
(i)

)
− miniA j

(
x

′
(i)

)
is the size of the

range (of the normalized values) of the attribute A j in the class Ci . Thus, Vi is the volume
of the hypercube in the M-dimensional space, and den (Ci ) is the number of objects of the
class Ci in the unit hypercube, i.e., density. We can easily get the fact that the two classes
have the same “volume” (0.282) on the WPBC data set. The same situation applies to the
other data sets (Ionosphere:0.0434; Titanic:1; Magic:0.0856). The density of the class with
more objects is higher than that of another class. And our method is designed to handle such
data sets (including clusters of different densities). The new local density computation can
reduce the local density gap between low-density clusters and high-density clusters. It helps
detect correct cluster centers. On the WPBC, Ionosphere, and Titanic data sets, DP cannot
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even find correct cluster number, but our method can perform a good job. The experimental
results illustrate the superior performance of our algorithm compared with other clustering
approaches.Note that these four data sets are all special cases. Actually, not all the imbalanced
data sets have this property: Different classes have the same “volume.”

5 Conclusions

Referring to the ideas of the prior assumption of consistency for semi-supervised learning
problems, we make the assumptions of consistency for density-based clustering. In order to
tackle the problem that DP does a poor job of find clusters with different densities, we provide
a new option based on the sensitivity of the local density for the local density. This satisfies
the assumption of the local consistency. In addition, the original assignation strategy does
not take into account of the assumption of the global consistency. Therefore, we propose a
new density-adaptive metric which can magnify the path length in a low-density area and
shorten the path length in a high-density area. Furthermore, we redefine δ and redesign the
assignation strategy based on this metric. The experimental results support our claim that the
proposed algorithm is an efficient algorithm.

UnlikeDP, ourmethod requires twoparameters:p and ε.As a rule of thumb, one can choose
ε =0.01, and p is around 1–6%.But, indeed, it is not simple to estimate the optimal parameters
if the ground truth is unknown. Future works will develop a method with nonparametric
estimation calculates the local density. Moreover, there are also some other approaches to
addressing the issue that the clusters have greatly varied densities. For example, a solution
for the weakness is finding different parameter dci for different data point xi . However, how
to select all the parameters automatically is one of the interesting challenges. In future works,
we will focus on finding the solution.

In addition, similar toDP, ourmethod cannot select the cluster centers automatically. Thus,
we want to develop an automatic cluster centroid selection method. As described in Sect. 3.3,
our method becomes computationally expensive, since the density-adaptive distance requires
minimizing a function for each pair of points. We will try to introduce the idea of the grid
into our method. The cost is only associated with the number of cells. And the number of
cells K is far less than the number of objects N .
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