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1  Introduction

Clustering is perhaps the most important and widely used 
method of unsupervised learning: [1, 2] It is the problem of 
identifying groupings of similar points which are relatively 
‘isolated’ from each other, or in other words, partition-
ing the data into dissimilar groups of similar items [3–5] . 
Clustering methods are generally divided into five groups: 
hierarchical clustering, partitioning clustering, density-
based clustering, grid-based clustering and model-based 
clustering [6–9].

In density-based clustering, clusters are defined as areas 
of higher density than the remainder of the data set. Density 
peaks clustering (DPC) algorithm [10] proposed by Rod-
riguez and Laio is a new density-based clustering method 
and does not require one to specify the number of clusters. 
This method is robust with respect to choosing dc as the 
only parameter. DPC is based on the idea that cluster cent-
ers are characterized by a higher density than their neigh-
bors and by a relatively large distance from points with 
higher densities. It is important to note that this method is 
robust with respect to changes in the metric which do not 
significantly affect the distances below dc.

Currently density peaks clustering algorithm is used 
in outlier detection [11], image processing [12–14], 
document processing [15], etc. However, DPC still has 
some defects. DPC is not quite appropriate for solv-
ing the problem which requires more cluster centers 
for subsequent analysis. In order to improve its capac-
ity, Tang et  al. [16] proposed an enhanced fast density 
peak-based clustering (E-FDPC). In addition, DPC dose 
not perform well when there are more than one density 
peak in one cluster, which was named as “no density 
peaks”. Inspired by the idea of a hierarchical clustering 
algorithm CHAMELEON, Zhang et al. [17] proposed an 
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extension of CFSFDP (E_CFSFDP). The selection of the 
key intrinsic parameters in DPC algorithm was not sys-
tematically investigated, so Wang et al. [18] proposed a 
clustering procedure with adaptive density peak detec-
tion. In addition, Du et al. [19] proposed a density peaks 
clustering based on k nearest neighbors (DPC-KNN).

Despite these drawbacks, a significant one is that 
the geometry of the distribution of the data has not 
been taken into account in DPC. DPC cannot effec-
tively group data with arbitrary shapes, or multi-mani-
fold structures. However, the data with multi-manifold 
structures is ubiquitous in real-world pattern recogni-
tion tasks. In many practical problems, e.g., handwritten 
digit recognition, image segmentation, and web analysis 
etc. These multiple low-dimensional manifolds embed-
ded in high-dimensional data always are non-spherical 
shapes. Specifically, this algorithm is not able to find 
clusters of twisted, folded, or curved data on synthetic 
data sets. For example, Fig. 1 presents that clusters can-
not be all detected.

Many manifold learning algorithms [20–23] are used 
to find the geometry of the data. In these algorithms, the 
earliest and most simple one is Tenenbaum’s algorithm, 
Isomap [20], which uses the geodesic distances (GD), in 
the combination with multidimensional scaling (MDS), 
to learn the geometric structure of nonlinear manifolds. 
In order to overcome this problem, we propose a density 
peaks clustering using geodesic distances (DPC-GD) 
which introduces the idea of GD into DPC.

The proposed DPC-GD is based on density peaks 
clustering algorithm and the geodesic distances. The 
rest of this paper is organized as follows. In Sect. 2, we 
describe the principle of the DPC method and introduce 
the geodesic distances. In Sect.  3, we make a detailed 
description of DPC-GD. In Sect.  4, we present experi-
mental results on synthetic data sets and image data sets, 
then we analyze the performance of the proposed algo-
rithm. Finally, some conclusions and the intending work 
are given in the last section.

2 � Related works

This section provides brief reviews of DPC and GD.

2.1 � Density peaks clustering

Rodriguez and Laio proposed an algorithm published in the 
US journal Science. Its idea is that cluster centers are char-
acterized by a higher density than their neighbors and by a 
relatively large distance from points with higher densities. 
This method utilizes two important quantities: One is the 
local density �i of each point i, and the other is its distance 
�i from points of higher density. The two quantities corre-
spond to two assumptions with respect to the cluster cent-
ers. One is that the cluster centers are surrounded by neigh-
bors with a lower local density. The other is that they have 
relatively larger distance to the points of higher density. In 
the following, we will describe the computation of �i and �i 
in much more detail.

Assume that the data set is �N×M =
[
�
�
, �

�
,… , �

�

]T
, where �i =

[
x1i, x2i, . . . , xMi

]T is the vector with M 
attributes and N is the number of points. The distance 
matrix of the data set needs to be computed first. Let d(i, j) 
denote the Euclidean distance between the point i and the 
point j, as follows:

The local density of a point i, denoted by �i, is defined 
as:

where dc is a cutoff distance. �i is defined as the number of 
points which are adjacent to point i. There is another local 
density computation in the code presented by Rodriguez 
and Laio. If the former is called a hard threshold, the latter 
will be called a soft threshold. Specifically, �i is defined as 
a Gaussian kernel function, as follows:

(1)d(i, j) =
‖‖‖�i − �j

‖‖‖

(2)

�i =
∑
j

�
(
d(i, j) − dc

)

�(x) =

{
1, x<0

0, x>0

Fig. 1   DPC on these clusters of twisted and folded manifold
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where dc is an adjustable parameter, controlling the weight 
degradation rate.

dcis the only variable in Eqs.  2 and 3. The process for 
selecting dc is actually that for selecting the average number 
of neighbors of all points on the data set. In the code, dc is 
defined as:

where Nd =

(
N

2

)
 and d⌈

Nd×
p

100

⌉ ∈ D =
[
d1, d2,… , dNd

]
. D 

is a set of all the distances between every two points on the 
data set, which are sorted in ascending order. N denotes the 
number of points on the data set. 

⌈
Nd ×

p

100

⌉
 is the subscript 

of d⌈
Nd×

p

100

⌉, where ⌈∙⌉ is the ceiling function and p is a 

percentage.
The computation of �i is quite simple. The minimum dis-

tance between the point i and any other points with higher 
density, denoted by �i, is defined as:

Only those points with relatively high �i and high �i are 
considered as cluster centers. The points with high �i and �i 
value are also called as peaks which have higher densities 
than other points. A point is assigned to the same cluster as 
its nearest neighbor peak.

After cluster centers have been found, DPC assigns each 
of the remaining points to the same cluster as its nearest 
neighbors with higher density. A representation named as 
decision graph is introduced to help one to make a decision. 

(3)�i =
∑
j

exp

(
−
d(i, j)2

d2
c

)

(4)dc = d⌈
Nd×

p

100

⌉

(5)𝛿i =

⎧⎪⎨⎪⎩

min
j:𝜌i>𝜌j

(d(i, j)), if∃js.t.𝜌i > 𝜌j

max
j

(d(i, j)), otherwise

This representation is the plot of �i as a function of �i for 
each point.

The following algorithm is a summary of DPC.

2.2 � Geodesic distances

Indeed, DPC encounters difficulties when the data are non-
linear structures like the spiral illustrated in Fig.  2a. The 
distance between two points is measured by the traditional 
metric like in Fig. 2b. Some traditional metrics represented 
by Euclidean distance are able to reveal the intrinsic geom-
etry of the data. Instead, they have to be measured like in 
Fig. 2c, along the spiral.

We seek to reveal the intrinsic geometry of the data, as 
captured in the geodesic manifold distances between all pairs 
of data points. The crux is estimating the geodesic distance 
between faraway points, given only input-space distances. 
For neighboring points, input space distance provides a 
good approximation to the geodesic distance. For faraway 

Fig. 2   Two points in a spiral
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points, geodesic distance can be approximated by adding up a 
sequence of “short hops” between neighboring points. These 
approximations are computed efficiently by finding short-
est paths in a graph with edges connecting neighboring data 
points.

3 � Density peaks clustering using geodesic 
distances

The intrinsic geometry of data is not assessed in DPC algo-
rithm. For this reason, we propose a novel density peaks clus-
tering using geodesic distances (DPC-GD).

3.1 � The description of the algorithm

DPC-GD tries to combine the bests of DPC and Isomap by 
applying geodesic distances to DPC. Calculating distance 
matrix consists of two steps: calculate “old” distance matrix 
and apply the geodesic distances to calculating “new” dis-
tance matrix. These two steps are shown in Fig. 3.

This so-called geodesic distance is approximated in the 
following way. First, the neighborhood for each point is cal-
culated. For example, the neighborhood of a point may be the 
k nearest points. Once the neighborhoods are known, a graph 
is built, by linking all neighboring points. Next, each arc of 
the graph is labelled with the Euclidean distance or other 
metrics between the corresponding linked points. Finally, the 
geodesic distance between two points is approximated by the 
sum of the arc lengths along the shortest path linking both 
points. Practically, the shortest path is computed by Floyd’s 
algorithm.

Define the graph G over all data points by connecting 
points i and j, if i is one of the k nearest neighbors of j. Set 
edge lengths equal to d(i, j) according to Eq. 1.

Let dG(i, j) denote the geodesic distance between the point 
i and the point j, as follows:

Then for each value of l = 1, 2,…N in turn, replace all 
entries dG(i, j) by

A new distance matrix of final values DG =
{
dG(i, j)

}
 will 

contain the shortest path distances between all pairs of points 
in G.

(6)dD(i, j) =

{
d(i, j), if i, j are linked by an edge

∞, otherwise

(7)dG(i, j) = min
{
dG(i, j), dG(i, l) + dG(l, j)

}

Then we can adopt the idea of the geodesic distances to 
DPC. The following algorithm is a summary of the pro-
posed DPC-GD.

3.2 � Performance analysis

Complexity Analysis: Suppose N is the total num-
ber of points on the data set. The complexity in cal-
culating the similarity matrix is O

(
N2

)
. This proce-

dure, known as Floyd’s algorithm, requires O
(
N3

)
 

operations. DPC-GD also needs O
(
N2

)
 to compute the 

local density. In addition, we cost O(N logN) in the sort-
ing process with quick sort. For the progress to deter-
mine the cluster centers, we take no account of the time. 
As the complexity in assignment procedure is O(N), 
the total time complexity of our DPC-GD method 
isO

(
N2

)
+ O

(
N3

)
+ O

(
N2

)
+ O(N logN) + O(N) + O(N).

4 � Experiments and results

In this section, we test the performance of DPC-GD 
through two types of the experiments. By experiments on 
synthetic data sets, we compare the proposed algorithm 
with the original algorithm for grouping data with arbitrary 
shapes. By experiments on image data sets, we compared 
our algorithm with kernel k-means algorithm, spectral clus-
tering (SC) algorithm in accuracy.

We conduct experiments in a work station with a core i7 
DMI2-Intel 3.6  GHz processor and 18  GB RAM running 
MATLAB 2012B. We run kernel k-means algorithm, SC 
algorithm, 10 times on real-world data sets. On synthetic data 
sets, we measure the similarity between data points with the 
famous Euclidean distance, which is widely used to measure 
the similarity of spatial data, as shown in Eq. 1. On synthetic 
data sets, the similarity between two images is computed with 

old
distance matrix

new
distance matrix

Input data GD

Fig. 3   Two steps of calculating distance matrix
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a new image similarity method, the Complex-Wavelet Struc-
tural SIMilarity (CW-SSIM) [24], which is used to measure 
the similarity between images in the original paper. In DPC-
GD, the parameter dc is selected from {0.1 0.2 0.5 1 2 4 6%}, 
otherwise, the parameter k of the k neighborhoods is selected 
from {2 3 4 6 10}. In DPC, we also select the parameter dc 
from {0.1 0.2 0.5 1 2 4 6%}. Note that the CW-SSIM index 
fall in range from 0 to 1, and the higher the value of the CW-
SSIM is, the more similar the images will be. So we can 
apply these indices to producing a similarity matrix of kernel 
k-means and spectral clustering. However, for ease of utiliz-
ing DPC and DPC-GD, we map CW-SSIM index, denoted by 
dO(i, j), to the range 0–∞, as follow:

(8)dN(i, j) = − log
(
dO(i, j)

)

In this case, the smaller the value of the dN(i, j) is, the 
more similar the images will be. If the value of the dN(i, j) 
is 0, two images are the same. The most important thing 
is that converted values are applied to geodesic distances 
directly.

4.1 � Experiments on synthetic data sets

We test the performance of the original algorithm and our 
algorithm on synthetic data sets. The synthetic data sets 
are 2 dimension, which makes things easy from the visu-
alization point of view.

Fig. 4   Visualization of two-dimensional data sets
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4.1.1 � Synthetic data sets

The original algorithm and proposed algorithm are 
tested by 8 data sets whose geometric shapes are shown 
in Fig.  4. The first data set, two moons data set, which 
is widely used in some manifold learning algorithms 
[25–28], contains 2 clusters and 400 points. The second 
data set, squiggles data set [29], consists of 4 clusters 
which are of 602 points. The third data set, three circles 
data set [29], contains 2 clusters and 625 points. The 
fourth data set which is similar to three circles data set 
contains 450 points. But three circles only data set [30] 
are of 3 clusters. There are 2 clusters and 378 points in 
the fifth data set, two spirals data set [30]. The sixth data 
set [30] contains 4 lines and 512 points. The seventh data 
set, A1 data set [31], contains 3 clusters and 299 points. 
The last data set, A3 data set [31], contains 3 clusters and 

266 points. We demonstrate the power of our algorithm 
on these test cases.

4.1.2 � The evaluation of clustering results on synthetic data 
sets

On two moons data set, clustering results proposed by DPC 
have been given in Fig. 5. DPC is not able to find clusters, 
when the parameter dc is selected from {0.1 0.2 0.5 1 2 4 
6%}. Even if we give it a greater range of options, the per-
formance of the original algorithm is still poor.

The proposed algorithm gets better clustering perfor-
mance compared to DPC on two moons data set. Figure 6 
presents two clusters found by our algorithm with different 
dc, when the parameter k is fixed at 6.

Figure 7 shows clustering results proposed by DPC on 
four squiggles data set. DPC is not able to find clusters, 

Fig. 5   DPC on two moons data set with different values of d
c
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when the parameter dc is selected from {0.1 0.2 0.5 1 2 
4 6%}. In the first section, we give it a greater range of 
options, as shown in Fig. 1. The performance of the origi-
nal algorithm is still poor.

On four squiggles data set, the experimental results 
which demonstrate DPC-GD produces very good perfor-
mance are shown in Fig. 8. Our algorithm achieves satis-
factory results with different dc, when the parameter k is 
fixed at 4 and 6. The results demonstrate that our approach 
is robust respect to the parameters.

The original algorithm performs good results in two 
spirals data set as shown in Fig.  9. Because this data set 
contains non-Gaussian clusters. Figure  10 shows that our 
algorithm can also detect clusters very well.

On the remaining few data sets, clustering results pro-
posed by DPC have been given in Fig. 11. And our algo-
rithm produces the results in Fig.  12. For sake of saving 

space, we only show the best performance on these data 
sets.

Three circles only data set is similar to three circles data 
set. The only difference is that there is a line that links up 
with the two outer circles. The proposed algorithm sharply 
finds this difference and produces different clustering 
results. Four lines data set, A1 data set and A3 data set con-
sist of some clusters that are of different size and shape. 
Our algorithm performs significantly better in all these 
tests. These experiments illustrate that our algorithm is 
very effective in grouping data with arbitrary shapes.

4.2 � Experiments on image data sets

In this section, we show that challenges such as manifold 
proximity and non-uniform sampling are also common on 

Fig. 6   DPC-GD on two moons data set
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image data sets, and our algorithm is able to handle these 
issues effectively.

In order to be more convincible, the performances of our 
algorithm are compared with that of classical methods (ker-
nel k-means algorithm and spectral clustering algorithm).

4.2.1 � Image data sets

Three image data sets used in the experiments include 
Columbia University Image Library (COIL-20) [32], the 
UMIST face database [33], the USPS handwritten digit 
database [34].

COIL-20 consists of 32 × 32 grey images drawn from 20 
objects. Thus, each image is represented by a 1024-dimen-
sional vector. The images of each object are taken 5 degrees 
apart as the object is rotated on a turntable and each object 

has 72 images [35]. Figure 13 shows some examples of the 
first object from this data set.

The UMIST face database (UMIST) consists of 575 
images of 20 people. Each covers a range of poses from 
profile to frontal views. The original files are all in PGM 
format, approximately 220 × 220 pixels in 575 shades of 
grey. Cropped versions of 112 × 92 images are manually 
cropped by Daniel Graham. All images of the first 10 peo-
ple on cropped data set are taken to form this data set which 
is used in this paper. It consists of 265 images of 10 people. 
And each image is represented by a 10,304-dimensional 
vector [36]. Figure 14 shows some images on this data set.

The USPS handwritten digit database (USPS) con-
tains 9298 16 × 16 handwritten digit images in total, 
which is then split into 7291 training images and 2007 
test images. Finally, we select the clustering of the digits 

Fig. 7   DPC on four squiggles data set
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Fig. 8   DPC-GD on four squiggles data set
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Fig. 9   DPC on two spirals data set

Fig. 10   DPC-GD on two spirals data set

Fig. 11   DPC on the remaining few data sets
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from the USPS test database. We only use the images 
from five digits {0 2 4 6 7} on the data set. Thus, it con-
tains 1024 images, and each image is represented by a 
256-dimensional vector. Figure  15 shows some images 
of digits on this data set.

The details of these data sets are given in Table 1.

4.2.2 � Quality of the clustering results

We measured the quality via Clustering Accuracy (ACC) 
[37–39] and the Normalized Mutual Information (NMI) 
[40, 41] between the produced clusters and the ground 
truth categories.

First, we introduce the Clustering Accuracy. For N dis-
tinct samples xi ∈ Rj, yi and ci are the inherent category 

Fig. 12   DPC-GD on the remaining few data sets

Fig. 13   COIL-20

Fig. 14   The UMIST face 
database
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label and the predicted cluster label of �
�
, respectively, 

the calculation formula of ACC is

 where map(·) maps each cluster label to a category label by 
the Hungarian algorithm [42] and this mapping is optimal, 
let �(yi, ci) equal to 1 if yi = ci or equals to 0 otherwise. The 
higher the values of the ACC are, the better the clustering 
performance will be.

Finally, we introduce the Normalized Mutual Informa-
tion. The normalized mutual information between two ran-
dom variables CAT (category label) and CLS (cluster label) 
is defined as

 where I(CAT;CLS) is the mutual information between 
CAT and CLS. The entropies H(CAT) and H(CLS) are used 

(9)
ACC =

N∑
i=1

�(yi,map(ci))

N

(10)NMI(CAT;CLS) =
I(CAT;CLS)√
H(CAT)H(CLS)

to normalize the mutual information in the range of [0, 1]. 
In practice, we made use of the following formulation to 
estimate the NMI score [43]:

 where N is the number of images, Ni and Nj denote the 
number of images in category i and cluster j, respectively, 
and Ni,j denotes the number of images in category ias well 
as in cluster j. The NMI score is 1 if the clustering results 
perfectly match the category labels, and the score is close 
to 0 if data is randomly partitioned. The higher the NMI 
score, the better the clustering quality.

The comparison of these algorithms is shown in Table 2. 
In Table 2, the symbol—means that the algorithm cannot 
work on the data set. On these image data sets, DPC does a 
poor job of finding their clusters. In the case that DPC deals 
with data in the USPS set, only one cluster center is found 
by DPC with different dc on decision graph, as shown in 
Fig.  16. It is unacceptable that we are incapable of mak-
ing the right choices. DPC-GD has a favorable performance 
comparing to the original algorithm, as shown in Fig. 17.

Firstly, we discuss the problem of clustering from COIL-
20. Each object has 72 images captured under varying 
angles. Because the space of images under varying angles 

(11)NMI =

K∑
i=1

K∑
i=1

Ni,j log
�

N⋅Ni,j

Ni⋅Nj

�

����
�∑

i

Ni log
Ni

N

��∑
j

Nj log
Nj

N

�

Fig. 15   The USPS handwritten 
digit database

Table 1   The details of these image data sets

Data sets Cluster Dimension N

COIL-20 20 1024 1440
UMIST 10 10,304 265
USPS 5 256 1024

Table 2   The performance 
comparison of the proposed 
algorithm

Quality DPC DPC-GD SC kernel k-means

COIL-20 ACC – 1.0 0.6676 ± 0.0125 0.6320 ± 0.0509
NMI – 1.0 0.7492 ± 0.0084 0.7485 ± 0.0226
Parameter k = 2 dc = 6% c = 20 c = 20

UMIST ACC – 0.8830 0.3970 ± 0.0218 0.3491 ± 0.0247
NMI – 0.8739 0.4362 ± 0.0252 0.3900 ± 0.0352
Parameter k = 3 dc = 0.2% c = 10 c = 10

USPS ACC – 0.9097 0.5778 ± 0 0.5762 ± 0.0595
NMI – 0.7724 0.4273 ± 0 0.5288 ± 0.0366
Parameter k = 10 dc = 0.5% c = 5 c = 5
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is relatively densely sampled and the two images are very 
close to each other as shown in Fig. 13, there are several 
points whose closest neighbor comes from the other point. 
The experimental results which demonstrate DPC-GD pro-
duces very good performance on this data set are shown in 
Table 2.

Then, we consider the face images in the UMIST face 
database. The number of pictures per person is from around 

19–38 and the space of face images covers varying poses. It 
has a non-uniform sampling and a higher dimension com-
pared to COIL-20. The proposed algorithm also obtains 
satisfactory results on this database.

Finally, we explain the problem of clustering from the 
USPS handwritten digit database. This data set has a higher 
sampling density comparing to the first two, but the geom-
etry of the distribution of each cluster may not be obvious. 
Experimental results show that our algorithm is effective.

In consequence, the proposed algorithm outperforms 
the original algorithm on some image data sets of different 
sampling density and different distribution.

5 � Conclusions

In order to reveal the geometry of the data, the combina-
tion of the geodesic distances with density peaks clustering 
yields a novel algorithm, DPC-GD. The pairwise distances 
are recalculated by the geodesic distances. In this way, dis-
tances of points from the same cluster of arbitrary shape 
are shrunk.

Fig. 16   DPC on USPS set with different values of d
c

Fig. 17   DPC-GD on USPS set
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In this paper, we test our algorithm on synthetic data sets 
which makes things easy from the visualization point of 
view. The presented algorithm shows the power on some 
data sets. Meanwhile, in order to assess the performance 
of the proposed algorithm, we compare the proposed algo-
rithm with classical methods (kernel k-means algorithm 
and spectral clustering algorithm) and the original algo-
rithm on image data sets which contain complex natu-
ral observations. Our algorithm has achieved satisfactory 
results on most data sets.

Future work should also be devoted to improvements of 
the time (and the space) complexities of the proposed algo-
rithm. For example, we can apply Dijkstra’s algorithm or 
other method to the geodesic distances. In addition, we will 
develop an automatic cluster centroid selection method on 
the basis of the proposed algorithm.
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