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mining, pattern recognition, document retrieval, image seg-
mentation and so on [1]. Clustering methods are generally 
divided into three groups: hierarchical clustering, density/
neighborhood-based clustering and partitioning/centroid-
based clustering. Main procedures of agglomerative hier-
archical clustering are as follow. In the first step, closer 
objects are merged in a cluster, and then, objects a little bit 
far away from the previous ones are merged in the same 
cluster and so forth. In centroid-based methods, however, 
clusters are represented by centroids which have common 
features of some certain clusters and may not necessarily 
be members of the data set. In the next step the objects 
are assigned to these clusters according to the similar-
ity degrees to the centroids. In hierarchical clustering, the 
remoteness of objects from each other is considered, while 
in centroid-based methods their remoteness from the cen-
troids is considered. Partitioning-based clustering is repre-
sented by k-means [2]. Other methods of partitioning-based 
clustering include k-modes and fuzzy c-means (FCM) 
[3–5]. Density-based clustering is based on the idea that a 
cluster in a data space is a contiguous region of high point 
density, separated from other such clusters by contiguous 
regions of low point density. Neither do these methods 
require the number of clusters as input parameters, nor do 
they make assumptions about the underlying density or the 
variance within the groups that may exist in the data. To 
our knowledge, density-based clustering is probably intro-
duced for the first time by Wishart [6]. DBSCAN [7] algo-
rithm introduces density-based clustering independently 
to the Computer Science Community, also proposing the 
use of spatial index structures to achieve a scalable clus-
tering algorithm. To address one weakness of DBSCAN: 
the problem of detecting meaningful clusters in data of 
varying density, Ankerst et al. [8] propose a cluster analy-
sis method based on the OPTICS algorithm computing the 
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techniques, the clustering can be used in many fields data 
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augmented cluster-ordering of the database objects. DEN-
CLUE [9] proposes a notion of density-based clusters using 
a kernel density estimation. An algorithmic framework, 
called GDBSCAN [10], which generalizes the topological 
properties of density-based clusters, can be found in Sander 
et al. Some of density-based clustering methods are similar 
to hierarchical clustering, the main difference lying in their 
respective linkage criterion.

Density peaks (DP) clustering [11], a density-based 
algorithm, is proposed by Rodriguez and Laio. Unlike tra-
ditional density-based clustering methods, this algorithm 
can be considered as a combination of density-based and 
centroid-based. It starts by determining the centroids of 
clusters according to two important quantities: � and �. 
The second step is to determine which objects to merge in 
a cluster. Unlike traditional density-based clustering meth-
ods, it is based on the local density of objects. All objects 
are in descending order according to the local density. 
An unclassified object is assigned to the cluster that con-
tains a certain classified object satisfying a condition. It is 
the nearest of all the classified objects to the unclassified 
object. Similarly to other density-based methods, DP clus-
tering algorithm is able to recognize clusters with arbitrary 
shape. The computation speed of this algorithm is more 
advantageous than traditional density-based clustering 
methods. In order to overcome the problem that the global 
structure of data is not considered, Du et al. [12] propose 
a density peaks clustering based on k nearest neighbors 
(DPC-KNN). In addition, the DP clustering performs not 
well when it finds some pseudo cluster centers. In order to 
overcome this difficulty, Liang et al. propose the 3DC clus-
tering [13] based on the divide-and-conquer strategy and 
the density-reachable concept.

In real life, the boundary between clusters could not be 
precisely defined such that some of the objects could belong 
to more than one cluster with different positive degrees of 
membership. A classic example is the fuzzy clustering. 
In these methods, the Fuzzy c-Means (FCM) algorithm is 
perhaps the most important and widely used method. The 
vast majority of the research work [14–21] is based on this 
method. These methods suppose the fuzziness of cluster-
ing with respect to the possibility of the membership of 
some objects into various clusters. Nasibov and Ulutagay 
propose a different approach of fuzziness based on a new 
Fuzzy Joint Points (FJP) method [22] which perceives the 
neighborhood concept from a level-based viewpoint which 
means that the objects are considered in how much detail 
in construction of homogenous classes. It means that the 
fuzzier the objects, the more similar they are. Based on this 
approach, many clustering methods [23–25] are proposed.

In the case that number of clusters are known, the fuzzy 
clustering methods show excellent performance in specify-
ing datasets with sphere-like shape. In these methods, FJP 

algorithm is robust since it uses fuzzy relation in neighbor-
hood analysis. However, it performs poorly in terms of com-
putation time. On the other hand, DP clustering is able to 
detect clusters in any shape without specifying the number of 
clusters. In order to be able to run correctly in a wide range 
of change interval could be more advantageous, in this study, 
the fuzzy neighborhood- density peaks(FN-DP) clustering 
which integrates the speed of DP clustering algorithm with 
the robustness of FJP algorithm is proposed.

The rest of this paper is organized as follows. In Sect. 2, 
the DP clustering method is mentioned and some concepts 
about the FJP are defined. In Sect. 3, a detailed description 
of FN-DP is given. In Sect. 4, experimental results are pre-
sented on synthetic data sets and real world data sets. Finally, 
some conclusions and the intending work are given in the last 
section.

2 � Related work

2.1 � Density peaks clustering

Let � =
{
�1, �2,… , �n

}
 denote a dataset of n data objects. 

Each object �i, 1 ≤ i ≤ n has m attributes. Thus, for each 
i, 1 ≤ i ≤ n, and for j, 1 ≤ j ≤ m, let xi,j be the j-th attribute 
of �i. The Euclidean distance d

(
�i, �j

)
 between any points 

�i, �j ∈ � can be determined as follows:

Unlike DBSCAN, the DP clustering finds the cluster cent-
ers before data points are assigned. Determining the cluster 
centers is of vital importance to guarantee good clustering 
results. Because it determines the number of the clusters, and 
affects the assignation indirectly. In the following, we will 
describe the calculation of � and � in much more detail.

DP represents data objects as points in a space and adopts 
a distance metric, such as Eq. (1), as a dissimilarity between 
objects. Let D =

{
d1, d2,… , dNd

}
 a set of all the distances 

between every two points in data set, where all the distances 

from smallest to greatest. Nd =

(
n

2

)
, where N is the number 

of points in the dataset. Unlike DBSCAN, the neighborhood 
radius is determined not by the direct value, but by the per-
centage. dc indicates a percentage and is the only input 
parameter, which is called a cutoff distance. The neighbor-
hood radius � is defined as:

where ⌈⋅⌉ is the ceiling function and 
dmax = dNd

= max d
(
�i, �j

)
. The method takes one param-

eterdc which is a percentage.

(1)d
(
�i, �j

)
=

(
m∑
k=1

(
xi,k − xj,k

)2
)1∕2

.

(2)� = d⌈dmax
⋅dc⌉,
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The neighborhood set of point �i ∈ � with parameter � 
(�-neighborhood set) is as follows:

�
�i

(
�j

)
 denote the membership degree of the point �j to 

the neighborhood set of the point �i, as follows:

The local density �i [7] of a point �i is defined as:

The calculation of the delta value [7], again, is quite sim-
ple. The minimum distance between the point of �i and any 
other points with higher density, denoted by �i is defined as

When the local density and delta values for each point 
have been calculated, this method identifies the cluster 
centers by anomalously large �i and �i. On the basis of this 
idea, cluster centers always appear on the upper-right cor-
ner of the decision graph. After cluster centers have been 
found, the DP clustering assigns remaining points to the 
same cluster as its nearest neighbors with higher density.

2.2 � Basic concepts about the fuzzy joint points method

Let F(ℜm) denote the set of m-dimensional fuzzy sets of 
the space ℜm. ��

A:ℜ
m
→ [0, 1] denotes the membership 

function of the fuzzy set A ∈ F(ℜm).

Definition 2  A conical fuzzy point A = (a,R) ∈ F(ℜm) 
of the space ℜm is a fuzzy set with membership function 
(Fig. 1) [22].

where a ∈ ℜm is the center of fuzzy point A, and R is 
the radius of its support supp A, where

The �-level set of conical fuzzy point A = (a,R) is cal-
culated as

(3)N
(
�i, 𝜀

)
=
{
�j ∈ �

|||d
(
�i, �j

)
< 𝜀

}
.

(4)𝜇
�i

(
�j

)
=

{
1 if d

(
�i, �j

)
< 𝜀

0 otherwise
.

(5)�i =
∑

j
�
�i

(
�j

)
.

(6)𝛿i =

⎧⎪⎨⎪⎩

min
j:𝜌i<𝜌j

d
�
�i, �j

�
, if ∃j s.t. 𝜌i < 𝜌j

max
j

d
�
�i, �j

�
, otherwise

.

(7)𝜇�
A
(x) =

{
1 −

d(a,x)

R
if d(a, x) < R

0 otherwise
,

(8)supp A =
{
x ∈ ℜ

m||𝜇�
A(x) > 0

}
.

(9)
A𝛼 =

{
x ∈ ℜ

m||𝜇�
A(x) > 𝛼

}
= {x ∈ ℜ

m|d(a, x) < R ⋅ (1 − 𝛼)}.

In this study, the short term “fuzzy point” is used, 
instead of conical fuzzy point defined in Eq. (7).

3 � The proposed algorithm

Before introducing the proposed method, the fuzzy neigh-
borhood relation is defined.

3.1 � Fuzzy neighborhood relation

Points x1 and x2 have the same number of neighbors within 
� ≤ dmax radius (Fig. 2) [24]. There is an obvious difference 
between these points. It is obvious that the points x1 and x2 
in Fig. 2 are the same according to the crisp neighborhood 
relation used in the DP clustering method. Because in clas-
sical case there is no difference with respect to membership 
degrees between points within the same neighborhood radius 
of core point (Fig. 3) [24]. In other words, points y1 and y2 
have the same neighborhood membership degrees to the point 
x. As it is seen from Fig. 3, the membership degrees of y1 and 
y2 are both equal to 1. This study expands the neighborhood 

Aµ′

Aα

x2

x1

R

a

1

0

α

Fig. 1   Fuzzy point A = (a,R) ∈ F
(
ℜ2

)
 on the space ℜ2

x1

ε

x2

ε

Fig. 2   Classical and fuzzy neighborhood relations
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set determined in Eq. (4) to the fuzzy neighborhood case. Uti-
lizing fuzzy neighborhood function provides an advantage 
that there are different values of the neighborhood member-
ship degrees of the points with respect to different distances 
from core point.

Note that, in order to form a fuzzy relation 
�:X × X → [0, 1], the idea of the membership function of 
the fuzzy set defined in Eq. (4) is introduced. In order to be 
consistent with the parameter of the original DP clustering 
method, the radius of the considered fuzzy points is calcu-
lated as Eq. (2) in the proposed algorithm.

Thus, such a neighborhood membership function [24] is 
defined as

In the previous example, if fuzzy neighborhood function is 
used, point x1 will have a higher membership degree of being 
a core point than that of point x2.

In neighborhood relation determined by Eq.  (4), neigh-
borhood degrees of points with varying distances to the core 
point will be different from each other (Fig. 3).

As it is seen from Fig. 4 [24], points y1 and y2 have differ-
ent neighborhood membership degrees to the point x. Hence, 
the membership degree of y1, i.e. �1, is higher than the mem-
bership degree of y2, i.e. �2.

3.2 � FN‑DP

Based on the definitions given above, a new local density is 
redefined for fuzzy logic approach, as follows:

(10)𝜇�
�i

(
�j

)
=

{
1 −

d(�i,�j)
𝜀

if d
(
�i, �j

)
< 𝜀

0 otherwise
.

(11)�i =
∑

j
��

�i

(
�j

)
,

where �′ denotes the fuzzy neighborhood function 
defined by Eq. (10).

The main advantage of transformation of the DP clus-
tering algorithm to the FN-DP clustering algorithm and 
using fuzzy sets theory is that the fuzzy neighborhood 
function that make local density more sensitive can be 
utilized. So the FN-DP clustering method could be more 
robust to the datasets various shapes and densities.

The idea of Sect.  3.1 is introduced into the DP clus-
tering algorithm. The following algorithm is a summary 
of the proposed algorithm based on fuzzy neighborhood 
relation.

Algorithm. The proposed algorithm.
Inputs:
The samples� ∈ ℜn×m

The parameterd
c

Outputs:
The label vector of cluster index:� ∈ ℜn×1

Method:
Step 1: Calculate distance matrix according to Eq. (1)
Step 2: Calculate �

i
 for point �

i
 according to Eq. (11)

Step 3: Calculate �
i
 for point �

i
 according to Eq. (6)

Step 4: Plot decision graph and select cluster centers
Step 5: Assign each remaining point to the cluster
Step 6: Return y

Now, the time complexity of the proposed algo-
rithm is given. Assume that N is the number of objects 
in the data set. The computational complexity of the 
similarity matrix is O

(
N2

)
. This also need O

(
N2

)
 to 

compute the new local density. In addition, the cost 
of the sorting process with quick sort O(N logN). As 
the complexity in the assignment procedure is O(N),  
the total time cost of the proposed algorithm is 
O
(
N2

)
+ O

(
N2

)
+ O(N logN) + O(N)̃O

(
N2

)
.

μx

1

ε(x) d(x,y)(y1) (y2)

Fig. 3   The crisp neighborhood relation of the DP clustering

ε(y2)(y1)(x) d(x,y)

μx

1

α1

α2

Fig. 4   The fuzzy neighborhood relation of the FN-DP clustering
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4 � Experiments and results

In order to demonstrate the feasibility of the proposed 
algorithm, 12 synthetic datasets with various shapes and 
densities are used. To further compare FN-DP clustering 
algorithm based on fuzzy neighborhood relation with the 
original algorithm based on crisp neighborhood relation, 
5 synthetic datasets are used. Moreover, by experiments 
on real-world datasets, the proposed method is compared 
with the original algorithm in terms of clustering accuracy 
(ACC), normalized mutual information (NMI) and adjusted 
Rand index (ARI) [26–31].

We conduct experiments in a desktop computer with a 
core i7 DMI2-Intel 3.6  GHz processor and 16  GB RAM 
running MATLAB 2013A. The cutoff distance dc used in 
the DP clustering algorithm and the FN-DP clustering algo-
rithm is given from 0.1 to 100% at an increment 0.1% for 
all 5 synthetic datasets. On the other hand, on real-world 
datasets, The parameter dc is selected from the sequence 
{0.1% 0.5% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%} based 
on the clustering performance. In order to better demon-
strate the feasibility of the proposed algorithm, the best 
results only are presented in terms of clustering accuracy.

4.1 � Experiments on synthetic datasets

As shown in Fig. 5a–d, the proposed method does an excel-
lent job in clustering datasets with spherical or ellipsoidal 
shape. Among them, A1, A2 and A3 datasets are large 
datasets with varying number of clusters. The experiment 
results demonstrate the robustness of the FN-DP cluster-
ing method in terms of the quantity. As shown in Fig. 5e–g, 
the proposed algorithm gets extraordinarily favorable per-
formance to these three datasets with different sizes and 
shapes. As shown in Fig.  5h–k, the datasets S1 to S4 are 
two-dimensional sets with varying complexity in terms of 
spatial data distributions. The data sets have 5000 points 
around 15 clusters with a varying degrees of overlap. The 
performance of the proposed algorithm is perfect for data 
sets with varying complexity. As these experiments illus-
trate our algorithm is very effective in finding clusters of 
arbitrary shape, density, distribution and number.

4.2 � Experiments for robustness

To evaluate the performances of the algorithms, “correct 
range percent (CRP)’’ is used as an indicator to indicates 
the percentage of correct result range of dc parameter to the 
whole [0%, 100%] interval. So the CRP criteria is calcu-
lated as follows:

(12)CRPi =
∑

j
CRPi,j =

∑
j

(
dc
)U
i,j
−
(
dc
)L
i,j
,

where CRPi,j =
(
dc
)U
i,j
−
(
dc
)L
i,j

 is the j-th continuous 
interval of the parameter dc, in which the algorithm can 
give correct results in the i-th dataset, where 

(
dc
)U
i,j

 is the 
low bound and 

(
dc
)L
i,j

 is the upper bound in the j-th continu-
ous interval.

In addition, the strict criteria will be loosened, because 
even experts cannot find absolutely correct clustering 
results visually in some datasets. For Aggregation and 
R15 datasets, all cases that the accuracy is more than 99% 
is considered acceptable. Because of that D31 dataset has 
more clusters, the benchmark of the clustering accuracy is 
revised to 96%.

In order to show these results visually, comparisons are 
given as histogram (Fig. 6). The CRP values for the clus-
terings obtained with FN-DP are, in all the cases superior 
to the one obtained by DP. Flame, Twospirals and Aggre-
gation have clusters with non-spherical shape. It is obvi-
ous that FN-DP results are significantly better than those 
obtained by the original algorithm for these three datasets. 
On R15 and D31 datasets with spherical shape, in com-
parisons with the DP clustering method, our method always 
shows a small advantage in terms of the CRP criteria. It’s 
tempting to conclude that our algorithm does an excellent 
job compared with DP, when the dataset has some cluster 
with non-spherical shape. On the other hand, when a data-
set present the non-spherical distribution, the CRP values 
of the clusters formed by the two methods are close. How-
ever, the proposed method performs slightly better.

4.3 � Experiments on real‑world datasets

4.3.1 � Real‑world datasets

The real-world datasets used in the experiment also are 
taken from the UCI Machine Learning Repository, includ-
ing Iris Plants Database (Iris), Wine Recognition Database 
(Wine), the Heart Disease database (Heart), Ionosphere 
database (Ionosphere), Wisconsin Diagnostic Breast Can-
cer (WDBC), Waveform Database (Waveform), Ringnorm 
data set (Ringnorm) and Pen-Based Recognition of Hand-
written Digits (Penbased). The details of these datasets are 
listed in Table 1.

4.3.2 � Performance on real‑world datasets

Table  2 lists the clustering accuracy of our proposed 
algorithm and the original algorithm. In the following 
tables, the numbers highlighted in bold indicate that the 
corresponding algorithm has the best performance in 
terms of its corresponding evaluation. Tables 2, 3 and 4 
show comparisons against DP and DBSCAN in terms of 
the different quality measures (ACC, NMI and ARI). In 
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these tables, the symbol - means that DBSCAN detects 
outliers on the corresponding data set. Thus, in these 
cases, we cannot evaluate the performance of DBSCAN 
using these quality measures. In addition, on Iris, Wine, 
Waveform and Ringnorm data sets, numbers of clusters 
are found accurately by DBSCAN. It only detects two 

clusters, one cluster, one cluster and one cluster, respec-
tively. By comparison with the DP clustering algorithm 
and DBSCAN, our method obtains better clustering per-
formance in terms of the all quality measures (ACC, NMI 
and ARI) on all datasets, as shown in Tables 2, 3 and 4. 
In the following tables, the numbers highlighted in bold 

Fig. 5   Experimental results of FN-DP on these datasets
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indicate that the corresponding algorithm has the best 
performance in terms of its corresponding evaluation.

To explain further how to choose the parameter dc of 
DP and FN-DP, we use the Heart data set as an example. 
Figure 7 shows the ACC values obtained by the two meth-
ods with different dc on the Heart data set. The horizontal 
axis represents the parameter dc. As explained earlier (in 
the beginning of Sect. 4), the parameter dc is selected from 
the sequence {0.1% 0.5% 1% 2% 3% 4% 5% 6% 7% 8% 9% 
10%}. The vertical axis represents the ACC value. Obvi-
ously, when we set parameter dc to 1%, FN-DP obtains the 
best result (0.8111) on this data set. Nevertheless, when 
parameter is set to 6%, DP obtains the best result (0.8074) 
on the Heart data set. In this paper, the parameter dc is 
selected based on the clustering performance. Thus, on 
the Heart data set, the parameter dc of FN-DP is set to 1%, 
whereas the parameter dc of DP is set to 6. As a result, the 
parameter dcof the two algorithms is not the same. On other 
data sets, we present the best results in terms of clustering 
accuracy. Thus the parameter of the two algorithms may 
be different on each data set. Similar strategy on parameter 
selection has been used in some literatures [32–35]. It is 
interesting to note that if the parameter dc of the two algo-
rithms is set to 1%, the ACC value of the proposed method 
is slightly higher than that of DP. By contrast, if the param-
eter dc of the two algorithms is set to 6%, the ACC value 
of the two algorithms is the same. In addition, if and only 
if the parameter dc of the two algorithms is set to 7%, the 
ACC value of DP is slightly higher than that of FN-DP as 
shown in Fig. 7. In most cases, FN-DP results are signifi-
cantly better than those obtained by the original algorithm 
on this data set. This again proves that FN-DP obtains more 
robust performance than the original algorithm.

Figure  8 shows the running time spent on clustering 
using FN-DP and DP methods. We run every algorithm 20 
times on each data set and get the average. It is clear the 
running times of the two methods are close, within a dif-
ference of 0.0001, on the first five data sets. However, the 
running times of FN-DP are slightly smaller than those of 
DP on some larger data sets (Waveform, Ringnorm and 
Penbased). The reason for this result may be that MAT-
LAB has a very strong processing capability for matrix 
manipulations. The code of the original algorithm does 
not use matrix manipulations to compute the local density. 
In all cases, the two methods are comparable in terms of 
efficiency. Our proposed method brings a boost of perfor-
mance without loss of efficiency.

4.4 � Experiments on image data

We test the quality of this algorithm on image data. Fig-
ure 9 shows the original images from the Berkeley data-
base and the segmentation evaluation database [36–38]. 

Fig. 6   Comparison of FN-DP and DP in terms of CRP

Table 1   The details of UCI data sets

Data Sets Cluster Dimension Number

Iris 3 4 150
Wine 3 13 175
Heart 2 13 270
Ionosphere 2 34 351
WDBC 2 30 569
Waveform 3 21 5000
Ringnorm 2 20 7400
Penbased 10 16 10,992

Table 2   Clustering accuracy of the evaluated algorithms on real-
world data sets

Data sets Quality FN-DP DP DBSCAN

Iris ACC 0.9667 0.9 0.6667
Para d

c
= 10% d

c
= 6% � = 1.5MinPts = 15

Wine ACC 0.9326 0.9157 0.3392
Para d

c
= 6% d

c
= 4% � = 4MinPts = 10

Heart ACC 0.8111 0.8074 –
Para d

c
= 1% d

c
= 6%

Ionosphere ACC 0.7407 0.5556 –
Para d

c
= 0.1% d

c
= 0.5%

WDBC ACC 0.8664 0.8594 –
Para d

c
= 4% d

c
= 3%

Waveform ACC 0.5506 0.5446 0.3392
Para d

c
= 4% d

c
= 4% � = 6MinPts = 10

Ringnorm ACC 0.5157 0.5076 0.5049
Para d

c
= 7% d

c
= 3% � = 7.5MinPts = 10

Penbased ACC 0.7606 0.7177 –
Para d

c
= 0.1% d

c
= 3%
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Figure  10 shows image segmentation results. Unlike 
K-means, the number of groups is specified in advance. 
The number of groups may depend on the result of deci-
sion graph. Thus, FN-DP can be separated from all the 
other objects in the background, as shown in Fig. 10. In 
addition, it is also insensitive to the choice of dc in this 
test. Because the same results are obtained within [0.1%, 
10%] the range of dc over these images. Experimental 

results show that FN-DP can be a feasible preprocessing 
method for image segmentation.

5 � Conclusions

A new fuzzy neighborhood function is introduced into 
this paper and the FN-DP clustering algorithm based 
on this function is proposed. Experiments show that our 
algorithm is very effective in finding clusters with arbi-
trary shape, density, distribution and number. The pro-
posed algorithm combines the speed of the DP clustering 
method and robustness of FJP algorithm. It is observed 
that our algorithm is more robust than the original algo-
rithm to datasets with various shapes and densities. How-
ever, in this stage, the aim is not to find the optimal val-
ues of the parameters, but to prove that one can get more 

Table 3   Normalized mutual information of the evaluated algorithms 
on real-world data sets

Data sets Quality FN-DP DP DBSCAN

Iris NMI 0.8846 0.7869 0.5835
Para d

c
= 10% d

c
= 6% � = 1.5MinPts = 15

Wine NMI 0.7920 0.7600 0.0004
Para d

c
= 6% d

c
= 4% � = 4MinPts = 10

Heart NMI 0.2985 0.2898 –
Para d

c
= 1% d

c
= 6%

Ionosphere NMI 0.1395 0.0271 –
Para d

c
= 0.1% d

c
= 0.5%

WDBC NMI 0.4540 0.4357 –
Para d

c
= 4% d

c
= 3%

Waveform NMI 0.2620 0.2535 0.0004
Para d

c
= 4% d

c
= 4% � = 6MinPts = 10

Ringnorm NMI 0.0014 0.0004 0.0001
Para d

c
= 7% d

c
= 3% � = 7.5MinPts = 10

Penbased NMI 0.7377 0.5992 –
Para d

c
= 0.1% d

c
= 3%

Table 4   Adjusted rand index of the evaluated algorithms on real-
world data sets

Data sets Quality FN-DP DP DBSCAN

Iris ARI 0.9038 0.7455 0.5681
Para d

c
= 10% d

c
= 6% � = 1.5MinPts = 15

Wine ARI 0.8025 0.7562 0
Para d

c
= 6% d

c
= 4% � = 4MinPts = 10

Heart ARI 0.3845 0.3753 –
Para d

c
= 1% d

c
= 6%

Ionosphere ARI 0.2231 -0.0380 –
Para d

c
= 0.1% d

c
= 0.5%

WDBC ARI 0.5284 0.5071 –
Para d

c
= 4% d

c
= 3%

Waveform ARI 0.2768 0.2657 0
Para d

c
= 4% d

c
= 4% � = 6MinPts = 10

Ringnorm ARI 0.0009 0.0001 0
Para d

c
= 7% d

c
= 3% � = 7.5MinPts = 10

Penbased ARI 0.6443 0.5992 –
Para d

c
= 0.1% d

c
= 3%

Fig. 7   The ACC values of FN-DP and DP on the Heart data set

Fig. 8   Running time comparison of FN-DP and DP algorithm
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realistic and robust results by using fuzzy neighborhood 
relation in the proposed algorithm instead of using crisp 
neighborhood relation utilized in the original algorithm. 
The experimental results on real-world dataset illustrate 
the superior performance of our algorithm compared with 
the DP clustering approach.

The combination of our proposed algorithm and the �-
graph displays a possibility that an automatic cluster cen-
troid selection method is developed. FN-DP costs much 
time in the calculation of the similarity matrix, thus we 

will try to introduce the idea of the grid into our method. 
The cost is only associated with the number of cells. 
And the number of cells K is far less than the number of 
objects N.
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Fig. 9   The original images from the Berkeley database and the segmentation evaluation database

Fig. 10   Automatic image segmentation
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