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a b s t r a c t 

Most clustering algorithms rely on the assumption that data simply contains numerical values. In fact, 

however, data sets containing both numerical and categorical attributes are ubiquitous in real-world tasks, 

and effective grouping of such data is an important yet challenging problem. Currently most algorithms 

are sensitive to initialization and are generally unsuitable for non-spherical distribution data. For this, we 

propose an entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neigh- 

borhood (DP-MD-FN). Firstly, we propose a new similarity measure for either categorical or numerical 

attributes which has a uniform criterion. The similarity measure is proposed to avoid feature transfor- 

mation and parameter adjustment between categorical and numerical values. We integrate this entropy- 

based strategy with the density peaks clustering method. In addition, to improve the robustness of the 

original algorithm, we use fuzzy neighborhood relation to redefine the local density. Besides, in order to 

select the cluster centers automatically, a simple determination strategy is developed through introducing 

the γ -graph. This method can deal with three types of data: numerical, categorical, and mixed type data. 

We compare the performance of our algorithm with traditional clustering algorithms, such as K-Modes, 

K-Prototypes, KL-FCM-GM, EKP and OCIL. Experiments on different benchmark data sets demonstrate the 

effectiveness and robustness of the proposed algorithm. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Clustering analysis is aimed at finding correlations within sub-

sets of the dataset and assessing similarity among elements within

these subsets [1,2] . Clustering has many applications in various

domains including biology, economics and medicine. Its applica-

tions include data mining, document retrieval, image segmenta-

tion, and pattern classification [3,4] . Traditional clustering meth-

ods, e.g., K-Means [5] , can only handle numerical values. Neverthe-

less, in some real world applications, one has to deal with features,

such as gender, color, and type of disease that are categorical at-

tributes. In other words, data sets containing both numerical and

categorical attributes are ubiquitous in real-world tasks. Designing

an effective clustering algorithm for this type of data is a challeng-

ing problem. For convenience, we use the “mixed type” data to de-

note this type of data with numerical and categorical attributes in

this paper. But the mixed type data may contain ordinal attribute
or some other attributes in other literatures. 
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A straightforward way to deal with mixed type data has a pre-

rocessing that is able to convert categorical attributes to new

orms, e.g. the binary strings, and then apply the aforementioned

umerical value based clustering methods. However, binary en-

oding has three drawbacks. First and foremost, this method de-

tructs the original structure of categorical attributes. In other

ords, transformed binary attributes are meaningless and their

alues are hard to interpret [6] . Second, if the domain of a categor-

cal attribute is large, then transformed binary attributes will have

 much larger dimensionality. The last disadvantage is the difficult

f maintenance. If an attribute value is added into a categorical at-

ribute, all of the objects will be changed. In order to better solve

he problem, numerous researchers study on clustering based on

imilarity metrics dealing with categorical values directly, during

he last decade. Based on a similarity (or dissimilarity) metric that

akes into account both numeric and categorical attributes, some

ethods, e.g., K-prototypes (KP) [7] and its variations which are

pplicable to numerical and categorical data are presented. In or-

er to circumvent parameter adjustment between categorical and

umerical values, some works, e.g., Similarity-Based Agglomerative

lustering (SBAC) algorithm [6] , based on a new similarity metric

or mixed type data, are presented. However, SBAC is high compu-

http://dx.doi.org/10.1016/j.knosys.2017.07.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2017.07.027&domain=pdf
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ational complexity. Some methods based on a parameter-free sim-

larity metric, e.g. OCIL [8] , are proposed. But this metric only can

easure the similarity between an object and a cluster. And like

P and its variations, OCIL uses the K-Means paradigm to cluster

ixed type data and is an iterative clustering algorithm. Hence,

uch kind of algorithms is sensitive to initialization and is more

uitable for spherical distribution data. 

In this paper, we propose a novel density peaks clustering al-

orithm for mixed type data. Firstly, we propose a new similarity

easure for either categorical or numerical attributes which has

 uniform criterion. This similarity measure is proposed to avoid

eature transformation and parameter adjustment between cate-

orical and numerical values. Subsequently, to better handle data

ith the non-spherical distribution, a density-based data cluster-

ng, peak density (DP) clustering algorithm [9] , is introduced. The

lgorithm is able to detect non-spherical distribution data and does

ot need to pre-assign the number of clusters. We integrate this

ntropy-based strategy with the DP clustering method. Moreover,

o improve the robustness of DP, we use fuzzy neighborhood re-

ation to redefine the local density, which integrates the speed of

P clustering algorithm with the robustness of FJP algorithm [10] .

e also develop an automatic cluster center selection method. On

he basis of these strategies, we develop a density-based cluster-

ng algorithm for mixed type data employing fuzzy neighborhood

DP-MD-FN). Additionally, in order to demonstrate the feasibility,

obustness and scalability, we conduct some experiments on syn-

hetic data sets. In order to assess the performance of the pro-

osed algorithm, we compare the proposed algorithm with other

lgorithms on some UCI data sets. As a result, our algorithm has

chieved satisfactory results in most data sets. 

The rest of this paper is organized as follows. Related works

re introduced in Section 2 . Section 3 sets down notations and de-

cribes the original DP clustering method. We make a detailed de-

cription of DP-MD-FN in Section 4 . Section 5 presents our exper-

mental results on synthetic data sets and real data sets. Finally,

ection 6 presents conclusions and future works. 

. Related works 

This section introduces the related works on: (1) clustering for

ixed type data and (2) density peaks clustering and (3) fuzzy

oint points. 

Firstly, we review traditional clustering algorithms for mixed

ype data. Some methods have a pre-processing that is able to con-

ert categorical attributes to new forms and facilitates processing.

or example, Ralambondrainy’s algorithm [11] transforms categor-

cal attributes into a set of binary attributes. Then, new forms are

reated as numeric in the K-Means algorithm. Hence, we can di-

ectly adopt most traditional distances which are often used in

umerical clustering, such as Euclidean distance, to define sim-

larity between transformed objects. However, as stated before,

he primary disadvantage of the binary encoding is that it can-

ot reveal the structure of the data sets. Apart from binary en-

oding, there are also other pre-processing methods. For example,

su [12] presents a new mechanism, distance hierarchy, which en-

odes a data set into a weighted tree structure. In addition, Hsu

t al. [13] introduce this mechanism into hierarchical clustering for

ixed type data. But it has a drawback that both the assignment

f weights and the construction of distance hierarchies rely on do-

ain knowledge. 

Unlike the pre-processing methods, some works try to find a

nified similarity metric for categorical and numerical attributes.

long this line, some clustering algorithms based on a unified sim-

larity metric for categorical and numerical attributes are proposed,

uring the last decade. Among them, K-prototypes (KP) algorithm

7] is one of the most famous clustering algorithms for mixed type 
ata. The algorithm is an extension of K-Modes [14] which han-

les categorical data by using a simple matching dissimilarity mea-

ure for categorical objects. Simple matching is compared with two

ategorical values according to a matching function. The result is

 if the two values are different or 0 otherwise. To avoid favor-

ng either type of attribute, Huang introduces a weight γ into K-

rototypes. Some variations of K-Prototypes, such as KL-FCM-GM

15] , WFK-prototypes [16] , perform fuzzy partition by combining

-Prototypes with fuzzy c-means (FCM)-type clustering. In addi-

ion, Zheng et al. [17] integrate evolutionary computation frame-

ork with KP and propose an unsupervised evolutionary cluster-

ng algorithm for mixed type data, evolutionary K-Prototypes algo-

ithm (EKP). Experimental results show that the parameter γ has

 great influence on these algorithms. Hence, it comes out that

hoosing the parameter is a delicate and difficult task for users

hat may be a roadblock for using K-Prototypes and its variations

fficiently. In order to circumvent parameter adjustment between

ategorical and numerical values, OCIL [8] gives a unified similarity

etric which can be applied to mixed type data using the entropy-

ased criterion. This similarity metric is also based on the concept

f object-cluster similarity. In other words, it can measure the sim-

larity between an object and a cluster rather than that between

bjects. Li et al. propose a Similarity-Based Agglomerative Cluster-

ng algorithm [6] based on a new similarity metric which deals

ith the mixed type data. This similarity metric is proposed by

oodall for biological taxonomy. It assigns a greater weight to un-

ommon feature value matching in similarity computations with-

ut assuming the underlying distributions of the feature values.

ut the method is high computational complexity. Most of these

ethods use the K-Means paradigm to cluster mixed type data and

ave an iterative process. Hence, they are sensitive to initialization

nd are generally unsuitable for non-spherical distribution data. 

Secondly, Density peaks clustering [9] and its variations are in-

roduced. Density peaks clustering, a density-based algorithm, is

roposed by Rodriguez and Laio. Unlike traditional density-based

lustering methods, the algorithm can be considered as a combi-

ation of the density-based and the centroid-based. It starts by

etermining the centroids of clusters according to two important

uantities: ρ and δ. The second step is to determine which objects

o merge in a cluster. Unlike traditional density-based clustering

ethods, it is based on the local density of objects. All objects are

n descending order in terms of the local density. An unclassified

bject is assigned to the cluster that contains a certain classified

bject satisfying a condition. It is the nearest of all the classified

bjects to the unclassified object. Similarly to other density-based

ethods, DP clustering algorithm is able to recognize clusters with

rbitrary shape. Density peaks clustering algorithm has been ap-

lied to a variety of applications, such as anomaly detection, im-

ge segmentation, community detection, and so on [18–20] , be-

ause it has the advantage of being convenient to implementation

nd computation. For example, inspired by this, Ma et al. propose

he LED algorithm [21] , which is based on Structural Clustering,

hich converts structural similarity between vertices to weights of

etwork. However, there are still some shortcomings. For example,

P algorithm cannot find the correct number of clusters automati-

ally. In order to overcome this difficulty, Liang et al. [22] propose

he 3DC clustering based on the divide-and-conquer strategy and

he density-reachable concept. DP only has taken the global struc-

ure of data into account, which leads to missing many clusters. In

rder to overcome this problem, Du et al. [23] propose a density

eaks clustering based on k nearest neighbors (DPC-KNN) which

ntroduces the idea of k nearest neighbors (KNN) into the original

nd has another option for the local density computation. To im-

rove the running speed of DP algorithm, Xu et al. [24] propose a

ovel approach based on grid, called density peaks clustering algo-

ithm based on grid (DPCG). 
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Fig. 1. Fuzzy point A = ( a, R ) ∈ F ( R 2 ) in the space R 2 . 
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Finally, we introduce the Fuzzy Joint Points (FJP) method. Fuzzy

clustering has constituted, in the past, a domain of research in

the framework of cluster analysis. In these methods, the Fuzzy c-

Means (FCM) algorithm is perhaps the most important and widely

used method. Nasibov and Ulutagay [10] propose a different ap-

proach of fuzziness based on a new Fuzzy Joint Points method

which perceives the neighborhood concept from a level-based

viewpoint which means that the objects are considered in how

much detail in construction of homogenous classes. It means that

the fuzzier the objects are, more similar they are. Based on this

approach, many clustering methods [25,26] are proposed. In these

methods, FJP algorithm is robust since it uses fuzzy relation in

neighborhood analysis. 

3. Preparation 

3.1. Notations 

x i = [ x i, 1 , x i, 2 , · · · , x i,M 

] is an object with M numerical attributes.

Let d( x i , x j ) denote the Euclidean distance between the object x i 
and the object x j , as follows: 

d 

(
x i , x j 

)
= 

∥∥ x i − x j 

∥∥
2 
. (1)

From information theory [27] , entropy has generally been asso-

ciated with the amount of order or disorder in the system [28] . It

means that entropy is more for a room with socks strewn all over

the floor, and less for a room with socks placed in an underwear

drawer [29] . More formally, entropy is the highest in the case that

the probability of the variable obeys the uniform distribution. By

contrast, the entropy are low when the bell-shaped histogram of

the probability is “tall” and “thin” [30] . 

We assume that x is a discrete random variable belonging to a

finite set V = { x 1 , x 2 , · · · , x r } and p ( x ) is the probability mass func-

tion of the discrete random variable x . The entropy E ( x ) is defined

as 

H ( x ) = −
∑ 

x ∈ V 
p ( x ) log ( p ( x ) ) . (2)

Some basic concepts about the fuzzy joint points method will

be given later. Let F ( R 

m ) denote the set of m -dimensional fuzzy

sets of the space R 

m . μ : R 

m → [ 0 , 1 ] denotes the membership

function of the fuzzy set A ∈ F ( R 

m ) . 
A conical fuzzy point A = ( a, R ) ∈ F ( R 

m ) of the space R 

m is a

uzzy set with membership function ( Fig. 1 ) 

′ 
A ( x ) = 

{ 

1 − d ( a, x ) 

R 

, i f d ( a, x ) < R 

0 , otherwise 

, (3)

here a ∈ R 

m is the center of fuzzy point A , and R is the radius of

ts support supp A, where 

upp A = 

{
x ∈ R 

m 

∣∣μ′ 
A ( x ) 

〉
0 

}
. (4)

The α-level set of conical fuzzy point A = ( a, R ) is calculated as

 α = { x ∈ R 

m > a } = { x ∈ R 

m | d ( a, x ) < R · ( 1 − a ) } . (5)

In this study, the short term “fuzzy point” is used, instead of

onical fuzzy point defined in Formula (3) . 

.2. Density peaks clustering 

Unlike DBSCAN, the DP clustering finds the cluster centers be-

ore data points are assigned. Determining the cluster centers is

f vital importance to guarantee good clustering results. Because it

etermines the number of the clusters and affects the assignation

ndirectly. In the following, we will describe the calculation of ρ i 

nd δi in much more detail. 

DP represents data objects as points in a space and adopts a

istance metric, such as Formula (1) , as a dissimilarity between

bjects. Let D = { d s 1 , d s 2 , · · · , d s N d } be a set of all the distances be-

ween every two points in data set, where all the distances from

mallest to greatest. N d = ( 
n 

2 
) , where N is the number of points

n the dataset. Unlike DBSCAN, the neighborhood radius is deter-

ined by the percentage rather than by the direct value. d c indi-

ates a percentage and is the only input parameter, which is called

 cutoff distance. The neighborhood radius ɛ is defined as: 

 = d s � d s max ·d c � , (6)

here � · � is the ceiling function and d s max = max ( d( x i , x j ) ) . 

The neighborhood set of point x i ∈ X with parameter ɛ ( ɛ -
eighborhood set) is as follows: 

 ( x i , ε ) = 

{
x i ∈ X | d (x i , x j 

)
< ε 

}
. (7)

x j ( x j ) denotes the membership degree of the point x j to the

eighborhood set of the point x i , as follows: 

x j 

(
x j 

)
= 

{ 

1 , i f d 
(
x i , x j 

)
< ε 

0 , otherwise 
. (8)

The local density ρ i of a point x i is defined as: 

i = 

∑ 

j 

μx j 

(
x j 

)
. (9)

The calculation of the delta value, again, is quite simple. The

inimum distance between the point of x i and any other points

ith higher density, denoted by δi is defined as 

i = 

⎧ ⎨ 

⎩ 

min 

j: ρi < ρ j 

d 
(
x i , x j 

)
, i f ∃ j s.t. ρi < ρ j 

max 
j 

d 
(
x i , x j 

)
, otherwise 

. (10)

When the local density and delta values for each point have

een calculated, this method identifies the cluster centers by

nomalously large ρ i and δi . On the basis of this idea, cluster cen-

ers always appear on the upper-right corner of the decision graph.

fter cluster centers have been found, the DP clustering assigns re-

aining points to the cluster to which its nearest neighbors with

igher density belong. 
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H  
. The proposed algorithm 

We present a new similarity measure as a unified framework

or handling mixed type data with numerical and categorical at-

ributes. To be more suitable for non-spherical distribution data,

e introduce the similarity metric into the density peaks cluster-

ng algorithm for clustering data. Furthermore, to improve the ro-

ustness of the original DP method, we use fuzzy neighborhood

elation to redefine the local density. Finally, to correctly find the

umber of clusters, we develop an automatic cluster center selec-

ion method. 

.1. Similarity measure 

Let X = { x 1 , x 2 , · · · , x N } denote a dataset of N mixed data ob-

ects, where for each x i , i subjects to 1 ≤ i ≤ N . A mixed data

 i is represented by M ( M = M n + M c ) attributes A 

(n ) 
1 

,

 

(n ) 
2 

, · · · , A 

(n ) 
M n 

, A 

(c) 
M n +1 

, A 

(c) 
M n +2 

, · · · , A 

(c) 
M n + M c 

, where A 

(n ) 
1 

, A 

(n ) 
2 

, · · · , A 

(n ) 
M n 

re the M n numerical attributes and A 

(c) 
1 

, A 

(c) 
2 

, · · · , A 

(c) 
M c 

are the M c 

ategorical attributes. x (n ) 
i,k 

denotes the k th attribute of x (n ) 
i 

, where

 

(n ) 
i 

is the numerical part. x (c) 
i,k 

denotes the k th attribute of x (c) 
i 

,

here x (c) 
i 

is the categorical part. x (n ) 
i,k 

(1 ≤ k ≤ M n ) belongs to R .

nd DOM ( A 

(c) 
k 

) (1 ≤ k ≤ M n ) denotes the domain of x (c) 
i,k 

. That is, the

ategorical domain is denoted by DOM ( A 

(c) 
k 

) = { a k, 1 , a k, 2 , · · · , a k, r k 
} ,

here r k is the number of category values of the k th cat-

gorical feature. Therefore, we represent x i as a vector

 [ x (n ) 
i 

, x (c) 
i 

] = [ x (n ) 
i, 1 

, x (n ) 
i, 2 

, · · · , x (n ) 
i, M n 

, x (c) 
i, M n +1 

, · · · , x (c) 
i,M 

] . 

Unlike conventional similarity measures, we treat the similarity

n the numerical part as whole (i.e., the numerical attributes are

reated as a vector and handled together), but calculate the simi-

arity on the categorical part individually. As a result, the dimen-

ionality of x i is M n + M c , but the number of attributes that is used

or measuring similarity between objects is 1 + M c . Thus we use 1

umerical vector and M c categorical attributes to compute similar-

ty. Thus the similarity between objects x i and x j can be denoted

s: 

 

(
x i , x j 

)
= 

1 

M c + 1 

(
S n 

(
x 

( n ) 
i 

, x 

( n ) 
j 

)
+ S ′ c 

(
x ( 

c ) 
i, 1 

, x ( 
c ) 

j, 1 

)
+ S ′ c 

(
x ( 

c ) 
i, 2 

, x ( 
c ) 

j, 2 

)
+ · · · + S ′ c 

(
x ( 

c ) 
i, M c 

, x ( 
c ) 

j, M c 

))

= 

1 

M c + 1 

S n 
(
x 

( n ) 
i 

, x 

( n ) 
j 

)
+ 

1 

M c + 1 

M c ∑ 

k =1 

S 
′ 
c 

(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)
(11) 

Let S c ( x 
(c) 
i 

, x (c) 
j 

) denote the similarity between x (c) 
i 

and x (c) 
j 

. If

e assume that each categorical attribute has the same contribu-

ion to the calculation of similarity on categorical part, we have 

 c 

(
x 

( c ) 
i 

, x 

( c ) 
j 

)
= 

1 

M c 

M c ∑ 

k =1 

S 
′ 
c 

(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)
= 

M c ∑ 

k =1 

1 

M c 
S 

′ 
c 

(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)
(12) 

Thus we can get 

 

(
x i , x j 

)
= 

1 

M c + 1 

S n 
(
x 

( n ) 
i 

, x 

( n ) 
j 

)
+ 

1 

M c + 1 

M c 

M c ∑ 

k =1 

1 

M c 
S ′ c 

(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)
= 

1 

M c + 1 

S n 
(
x 

( n ) 
i 

, x 

( n ) 
j 

)
+ 

M c 

M c + 1 

S c 
(
x 

( c ) 
i 

, x 

( c ) 
j 

)
(13) 

.1.1. Similarity measure for numerical values 

In this sub-section, we focus on the similarity metric on nu-

erical values. For numerical values, we easily obtain the distance

etween x (n ) 
i 

and x (n ) 
j 

. Thus, according to the measure of distance,

e can define the similarity between numerical vectors [31,32] .
 n ( x 
(n ) 
i 

, x (n ) 
j 

) is related via Shepard’s formulation as follows [33] :

 n 

(
x 

( n ) 
i 

, x 

( n ) 
j 

)
= exp 

(
−d 

(
x 

( n ) 
i 

, x 

( n ) 
j 

)2 
/ 2 

)
. (14) 

here d( · , · ) stands for the Euclidean distance, i.e., Formula (1) .

ere, we note that the value of the similarity measure on numer-

cal attributes cannot be 0. The closer the value of S n is to 1, the

ore similar the two objects are. If x (n ) 
i 

= x (n ) 
j 

, the value of it will

e equal to 1. 

.1.2. Similarity measure for categorical values 

This sub-section studies the similarity for categorical part. 

Firstly, we define the similarity between x (c) 
i,k 

and x (c) 
j,k 

. Contrary

o the simple matching [34] , S ′ c ( x (c) 
i,k 

, x (c) 
j,k 

) is defined as 

 

′ 
c 

(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)
= 

{
1 , i f x ( 

c ) 
i,k 

= x ( 
c ) 

j,k 

0 , i f x ( 
c ) 

i,k 

 = x ( 

c ) 
j,k 

. (15) 

In previous discussion, we assume that the weight of each cate-

orical attribute is the same. However, in practice, each categorical

ttribute has different contribution to the calculation of similarity

n categorical part. One of the main reasons for this is that dif-

erent attribute value has the different distribution. Thus Formula

12) can further be modified, as follows: 

 c 

(
x 

( c ) 
i 

, x 

( c ) 
j 

)
= 

M c ∑ 

k =1 

w k S 
′ 
c 

(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)
, (16) 

here 0 ≤ w k ≤ 1 and 

M c ∑ 

k =1 

w k = 1 . Obviously, w k is the weight of cat-

gorical attribute A 

(c) 
k 

. In other words, w k is the importance of cat-

gorical attribute A 

(c) 
k 

contributing to the calculation of the similar-

ty on the categorical part. 

Then we discuss how to calculate the weight w k of each cate-

orical attribute A 

(c) 
k 

. We apply the notion of entropy to the cal-

ulation of the weights. The larger the inhomogeneity of the data

et with respect to a categorical attribute, the larger the entropy

f this categorical attribute is [35] . Besides, the inhomogeneity of

he data set with respect to a categorical attribute corresponds to

he importance of this categorical attribute. Therefore, according to

ormula (2) , we can calculate the entropy of a categorical attribute

 

(c) 
k 

with DOM ( A 

(c) 
k 

) = { a k, 1 , a k, 2 , · · · , a k, r k 
} by 

 

A ( 
c ) 

k 

= −
∑ 

a k,t ∈ DOM 

(
A ( 

c ) 
k 

) p 
(
a k,t 

)
log 

(
p 
(
a k,t 

))
, (17) 

here the probability p ( a k, t ) of attribute value a k, t can be cal-

ulated by 

∑ N 
i =1 S 

′ 
c ( x 

(c) 
i,k 

, a k,t ) 

N . The function S ′ c ( ·, ·) is similar to For-

ula (15) . Obviously, the numerator denotes the number of objects

hose value of the categorical attribute A 

(c) 
k 

equals to a k, t . And, N

s the total number of objects in the data set. Observing Formula

17) carefully, we notice the fact that if the number of values cho-

en by A 

(c) 
k 

, r k , is very large, then the entropy of this categorical

ttribute, H 

A 
(c) 
k 

, is also high. This is not the same as the actual case.

n order to lower the impact of the categorical attributes with too

any different values or even unique values, such as the ID num-

er, we redefine the entropy of a categorical attribute A 

(c) 
k 

as 

 

′ 
A ( 

c ) 
k 

= − 1 

r k 

r k ∑ 

t=1 

p 
(
a k,t 

)
log 

(
p 
(
a k,t 

))
. (18)
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Fig. 2. Classical and fuzzy neighborhood relations. 
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ε (x) d(x,y) (y1) (y2) 

Fig. 3. The crisp neighborhood relation of the DP clustering. 
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Hence, we can quantify the importance of a categorical at-

tribute A 

(c) 
k 

as 

w k = 

H 

′ 
A ( 

c ) 
k ∑ M C 

k =1 
H 

′ 
A ( 

c ) 
k 

. (19)

Substituting Formula (19) into Formula (16) , we obtain the final

similarity measure on the categorical attributes, as follows: 

S c 
(
x 

( c ) 
i 

, x 

( c ) 
j 

)
= 

M c ∑ 

k =1 

( 

H 

′ 
A ( 

c ) 
k ∑ M C 

k =1 
H 

′ 
A ( 

c ) 
k 

· S ′ c 
(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)) 

. (20)

Notice that, similar to S n ( x 
(n ) 
i 

, x (n ) 
j 

) , the value of S c ( x 
(c) 
i 

, x (c) 
j 

)

also falls into the interval [0, 1]. The closer the value of S c is to 1,

the more similar the two objects are. If x (c) 
i 

= x (c) 
j 

, the value of it

will be equal to 1. And if x (c) 
i,k 


 = x (c) 
j,k 

, for every k , 1 ≤ k ≤ M c , then

the value of S c will be equal to 0. 

4.1.3. Similarity measure for mixed values 

From the above content, it is easy to discover the proposed sim-

ilarity measure for the numerical part (the whole numerical part)

is expressed via an exponential function, whereas, for the categori-

cal values, the similarity measure makes use of the entropy notion

to compute the weight of each categorical attribute. Then, the two

similarity measures are added together. Hence, this uniform simi-

larity between two mixed type objects x i and x j , denoted as S( x i ,

x j ), is defined by 

S 
(
x i , x j 

)
= 

1 

M c + 1 

exp 

(
−d 

(
x 

( n ) 
i 

, x 

( n ) 
j 

)2 
/ 2 

)

+ 

M c 

M c + 1 

M c ∑ 

k =1 

( 

H 

′ 
A ( 

c ) 
k ∑ M C 

k =1 
H 

′ 
A ( 

c ) 
k 

· S ′ c 
(
x ( 

c ) 
i,k 

, x ( 
c ) 

j,k 

)) 

, (21)

where the first term is the weighted similarity measure on the

numerical attributes and the second term is the weighted simi-

larity measure on the categorical attributes. Because the ranges of

these two similarities S n ( x 
(n ) 
i 

, x (n ) 
j 

) and S c ( x 
(c) 
i 

, x (c) 
j 

) are the inter-

val from 0 to 1, the value of S( x i , x j ) using the above weighting

scheme also falls into the interval (0, 1]. Notice that the value of

the similarity measure cannot reach to 0. If x i = x j , the value of it

will be equal to 1. 

To satisfy the requirement of the computation of the DP clus-

tering algorithm, we convert the judged similarity S( · , · ) back into

the distance d u ( · , · ). The smaller the distance is, the more simi-

lar the two objects are. Hence, the distance measure finally can be

defined as 

d u 

(
x i , x j 

)
= −log 

(
S 
(
x i , x j 

))
. (22)

4.2. Fuzzy neighborhood relation 

The points x 1 and x 2 have the same number of neighbors

within ɛ ≤ d max radius Fig. 2 ). There is an obvious difference be-

tween these points. The points x 1 and x 2 in Fig. 2 are the same

according to the crisp neighborhood relation used in the DP clus-

tering method. Because in classical case there is no difference with

respect to membership degrees between points within the same

neighborhood radius of core point ( Fig. 3 ). This study expands the

neighborhood set determined in Formula ( (8) to the fuzzy neigh-

borhood case. Utilizing fuzzy neighborhood function brings an ad-

vantage that there are different values of the neighborhood mem-

bership degrees of the points with respect to different distances

from core point. 

Note that, in order to form a fuzzy relation μ: X × X → [0, 1],

the idea of the membership function of the fuzzy set defined in
ormula (8) is introduced. In order to be consistent with the pa-

ameter of the original DP clustering method, the radius of the

onsidered fuzzy points is calculated as Formula (6) in the pro-

osed algorithm. 

Thus, such a neighborhood membership function is defined as

′ 
x i 

(
x j 

)
= 

{
1 − d ( x i , x j ) 

ε , i f d 
(
x i , x j 

)
< ε 

0 , otherwise 
. (23)

In the previous example, if fuzzy neighborhood function is used,

oint x 1 will have a higher membership degree of being a core

oint than that of point x 2 . 

In neighborhood relation determined by Formula (8) , neighbor-

ood degrees of points with varying distances to the core point

ill be different from each other ( Fig. 3 ). 

As it is seen from Fig. 4 , points y 1 and y 2 have different neigh-

orhood membership degrees to the point x. Hence, the member-

hip degree of y 1 , i.e. α1 , is higher than the membership degree of

 2 , i.e. α2 . 

.3. Algorithm description 

Based on the definitions given above, a new local density is re-

efined for fuzzy logic approach, as follows: 

i = 

∑ 

j 

μ
′ 
x i 

(
x j 

)
. (24)

here μ′ denotes the fuzzy neighborhood function defined by For-

ula (23) . 
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ε (y2) (y1) (x) d(x,y) 
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Fig. 4. The fuzzy neighborhood relation of the FN-DP clustering. 
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In order to select the cluster centers automatically, we intro-

uce the γ -graph. Firstly, the local density ρ i and the separation

istance δi are normalized to the scale of [0, 1]: 

i = 

ρi − min 

i 
ρi 

max 
i 

ρi − min 

i 
ρi 

. (25) 

i = 

δi − min 

i 
δi 

max 
i 

δi − min 

i 
δi 

. (26) 

Secondly, the parameter γ i is defined as the product of these

arameter ρi and δi 

2 
. 

i = ρi · δi 

2 
. (27) 

Once the parameter γ i has been calculated, we sort the data

oints in a descending order of γ i . With very high probability

he points with anomalously large γ value are cluster centers. We

eed to determine cluster centers in a quantitative way. Therefore

e define a threshold to determine cluster centers in terms of the

arameter γ i . The threshold α is defined by 

= t · mean ( γi ) . (28) 

here t is a new variable; mean( γ i ) is the mean of all values of

i . 

Therefore, cluster centers are the points that have γ i greater or

qual to the threshold α. As a rule of thumb, the parameter α can

hoose 5–40. 

In this sub-section, we introduce the similarity metric pre-

ented in Section 4.1 into the original DP clustering algorithm in

rder to handle mixed type data. We can calculate the distance

atrix of mixed type data by the proposed similarity measure. In

ddition, we use fuzzy neighborhood relation to redefine the lo-

al density. We also develop an automatic cluster center selection

ethod. 

The following algorithm is a summary of the proposed DP-MD-

N ( Algorithm 1 ). 

.4. Performance analysis 

The computational complexity is an important indicator of the

lgorithm. If the complexity is too high, it will limit the applica-

ion of the algorithm in complex scenes [36] . Now, we give the
ime complexity of the DP-MD-FN algorithm. To be consistent with

he above notations, we assume that N is the number of objects

n the data set; M n is the number of numerical attributes; M c 

s the number of categorical attributes; r is the average number

f different categorical attribute values. The cost of the similar-

ty matrix is O( ( M n N ) 2 + ( r M c N ) 2 ) . DP-MD-FN also needs O( N 

2 ) to

ompute the new local density. In addition, the cost of the sort-

ng process with quick sort is O( N log N ). As the complexity in as-

ignment procedure is O( N ), the total time cost of our proposed

lgorithm is O( ( M n N ) 2 + ( r M c N ) 2 ) + O( N 

2 ) + O( N log N ) + O(N) ∼
( ( r 2 M 

2 
c + M 

2 
n ) N 

2 ) . 

. Experiments and results 

In this section, we use experimental results to exhibit the ro-

ustness, the scalability and the clustering performance of our al-

orithm. In order to reveal the robustness and the scalability of

he proposed algorithm, we design some synthetic data sets. To

emonstrate the clustering performance of DP-MD-FN, we use it

n some benchmark data sets obtained from the UCI repository. On

he categorical data sets, we compare the proposed algorithm with

lustering, K-Modes [14] , KL-FCM-GM [15] , EKP [17] and OCIL [8] .

n the mixed type data sets, we compare the proposed algorithm

ith K-Prototypes [7] , KL-FCM-GM, EKP and OCIL. 

We conduct experiments in a work station with a core i7 DMI2-

ntel 3.6 GHz processor and 18GB RAM running MATLAB 2012B. 

In DP and DP-MD-FN, we select the parameter d c from {0.1%

.5% 1% 2% 4% 6%}. K-Prototypes is an extension of K-Modes which

an only handle categorical data. When we deal with categorical

ata sets, both the two clustering method results are consistent.

hus, we only run K-Modes on categorical data sets. The parame-

er γ of the K-Prototypes varies from 0.1 to 2.1 in 0.1 increments.

he parameter λ of KL-FCM-GM varies from 0.1 to 2.1 in 0.1 in-

rements. EKP contains 6 tunable parameters, they are: crossover

robability, mutation probability, initial population, η in SBX, n in

olynomial mutation, the weight of categorical part, i.e., γ . The

rst five parameters are set to default according to Parameter Set-

ing Table in [17] . γ is an important tunable parameter and varies

rom 0.1 to 2.1 in 0.1 increments. As K-Modes, K-Prototypes, KL-

CM-GM, EKP and OCIL are stochastic, we run every algorithm 10

imes on each data set and get the average. 

.1. Evaluation method 

Before presenting the experimental results, we first discuss the

valuation of cluster quality. We use four well-known validity in-

exes (ACC, NMI, ARI and F 1 ). These indexes are widely used to

easure clustering quality. 

This paper uses clustering accuracy (ACC) [37] to measure

he quality of clustering results. For N distinct samples x i ∈ R 

j ,

 = ( y 1 , y 2 , · · · , y k , ) denotes the true category labels and C =
( c 1 , c 2 , · · · , c k ) denotes the predicted cluster labels obtained by the

lustering algorithm. The calculation formula of ACC is 

CC = 

N ∑ 

i =1 

σ ( y i , map ( c i ) ) /N, (29) 

here map ( · ) maps each cluster label to a category label by the

ungarian algorithm [38] and this mapping is optimal, let σ (y i ,

ap (c i )) equal to 1 if y i = map( c i ) or 0 otherwise. In addition, N

s the number of objects in the data set. The higher the ACC value,

he better the clustering performs. 

In addition, we introduce the Normalized Mutual Information.

he normalized mutual information between two variables Y (cat-

gory labels) and C (cluster labels) is defined as 

MI ( Y ;C ) = − I ( Y ;C ) √ 

H ( Y ) H ( C ) 
(30) 
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Algorithm 1 

DP-MD-FN algorithm. 

Inputs: 

The samples X ∈ R N×M 

The parameter d c , t 

Outputs: 

The label vector of cluster index: y ∈ R N× 1 

Method: 

Step 1: Calculate distance matrix according to Formula (22) 

Step 2: Calculate ρ i for point x i according to Formula (24) 

Step 3: Calculate δi for point x i according to Formula (10) 

Step 4: Select cluster centers according to Formula (28) 

Step 5: Assign each remaining point to the cluster, which has its nearest neighbor of higher local density 

Step 6: Return y 
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where I ( Y ; C ) is the mutual information between Y and C . The en-

tropies H ( Y ) and H ( C ) are used to normalize the mutual informa-

tion in the range of [0, 1]. In practice, we made use of the follow-

ing formulation to estimate the NMI score [39] : 

NMI = −
∑ K 

i =1 

∑ K 
j=1 N i, j log 

(
N·N i, j 

N i ·N j 

)
√ (∑ 

i N i log 
(

N i 
N 

))(∑ 

j N j log 

(
N j 
N 

)) . (31)

where N is the number of objections, N i and N j denote the num-

ber of objects in category y i and cluster c j , respectively, and N i, j 

denotes the number of objects in category y i as well as in cluster

c j . The NMI score is 1 if the clustering results perfectly match the

category labels, and the score is close to 0 if data is randomly par-

titioned. The higher the NMI score, the better the clustering quality.

The Rand index mainly evaluates the clustering results accord-

ing to the relationship of pairwise data points. The adjusted Rand

index (ARI) [40,41] is the corrected-for-chance version of the Rand

index. Y (category labels) and C (cluster labels) are regard as two

different partitions of the dataset. ARI uses data pairs to measure

the agreement between two partitions. Let a be the number of

pairs of objects that are placed in the same class in Y and in the

same cluster in C, b be the number of pairs of objects in the same

class in Y but not in the same cluster in C, c be the number of

pairs of objects in the same cluster in C but not in the same class

in Y , and d be the number of pairs of objects in different classes

and different clusters in both partitions. The quantities a and d can

be interpreted as agreements, and b and c as disagreements. ARI is

defined by: 

ARI = 

2 ( ad − bc ) 

( a + b ) ( b + d ) + ( a + c ) ( c + d ) 
, (32)

where ARI ∈ [0, 1], the higher the value of ARI, the better the clus-

tering quality. Note that the adjusted Rand index can yield negative

values if the index is less than the expected index. 

F-Measure [42,43] is the ratio between recall and precision

measurements. P( i ) denotes the precision rate: 

P ( i ) = 

N 

( Y,C ) 
i 

N 

( C ) 
i 

, (33)

where N 

( Y,C ) 
i 

is the size of the intersection of class y i and cluster

c i ; N 

(C) 
i 

is the size of cluster c i . 

R( i ) denotes the recall rate: 

R ( i ) = 

N 

( Y,C ) 
i 

N 

( Y ) 
i 

, (34)

where N 

( Y,C ) 
i 

is the size of the intersection of class y i and cluster

c i ; N 

(Y ) 
i 

is the size of class y i . 
F 1 measure is the harmonic mean of precision and recall. The

 1 -score of class y i is defined by: 

 1 ( i ) = 2 · 1 

1 
R ( i ) 

+ 

1 
P ( i ) 

= 2 · R ( i ) · P ( i ) 

R ( i ) + P ( i ) 
(35)

The total F 1 -score of the clustering results is the weighted av-

rage of each class’s F 1 -score: 

 1 = 

1 

N 

∑ k 

i =1 
N 

( Y ) 
i 

· F 1 ( i ) (36)

here N is the number of objects; k is the class number of data

et; N 

(Y ) 
i 

is the size of class y i . F 1 -score reaches its best value at 1

nd worst at 0. 

In order to find significant differences among the results ob-

ained by the clustering algorithms, statistical analysis is used. The

riedman test [44–46] is a non-parametric statistical test that de-

ermines whether there are significant differences in the results

f the clustering algorithms. The first step in calculating the test

tatistic is to convert the original results to ranks. It ranks the

lgorithms for each data set separately. For the i th of n ds data

ets, rank values from 1 (best result) to k a (worst result). Denote

hese ranks as r i 
j 
(1 ≤ j ≤ k a , 1 ≤ i ≤ n ds ). Then the Friedman test

omputes the average ranks of algorithms, R j = 

1 
n ds 

∑ 

i 

r i 
j 
. Under the

ull-hypothesis, which states that all the algorithms are equivalent

nd so their ranks R j should be equal, the Friedman statistic 

2 
F = 

12 n ds 

k a ( k a + 1 ) 

[ ∑ 

j 

R j 
2 − k a ( k a + 1 ) 

2 

4 

] 

(37)

s distributed according to χ2 
F 

with k a − 1 degrees of freedom. 

Iman and Davenport showed that Friedman’s χ2 
F 

is undesirably

onservative and derived a better statistic 

 F = 

( n ds − 1 ) χ2 
F 

n ds ( k a − 1 ) − χ2 
F 

(38)

hich is distributed according to the F-distribution with k a − 1 and

 k a − 1 )( n ds − 1) degrees of freedom. We use α = 0 . 05 as the level

f confidence in all cases. A wider description of these tests is pre-

ented in [47,48] . 

.2. Experiments on synthetic data sets 

.2.1. Results for synthetic data sets 

The first base data set, BaseOne data set, has 360 data points,

qually distributed into three classes: G 1 , G 2 , G 3 . Each data point

onsists of three categorical attributes. The categorical attribute

alues are assigned to each class in equal proportion. Categori-

al attribute 1 has a unique categorical value for each class. Cat-

gorical attribute 2 has two distinct categorical values assigned to

ach class. And categorical attribute 3 has three distinct categori-

al values assigned to each class. Based on the BaseOne data set,
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Table 1 

Clustering accuracy of the evaluated algorithms on BaseOne and its variations. 

Data set BaseOne IrrOne1 IrrOne2 CorOne1 CorOne2 CorOne3 

DP-MD-FN ACC 1.0 1.0 1.0 1.0 1.0 1.0 

Para d c = 6% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 

K-Modes (K-Prototypes) ACC 0.8422 ± 0.2077 0.7661 ± 0.2006 0.7558 ± 0.1780 0.7503 ± 0.2149 0.7058 ± 0.1613 0.6675 ± 0.1593 

Para K = 3 K = 3 K = 3 k = 3 K = 3 k = 3 

KL-FCM-GM ACC 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 

Para λ = 0 . 7 λ = 1 . 6 λ = 1 . 6 λ = 1 . 6 λ = 1 . 6 λ = 1 . 0 

EKP ACC 1.0 ± 0.0 0.9653 ± 0.0087 0.9217 ± 0.0087 0.9992 ± 0.0026 0.9950 ± 0.0070 0.9950 ± 0.0049 

Para k = 3 k = 3 k = 3 k = 3 k = 3 k = 3 

OCIL ACC 0.9017 ± 0.1979 0.9078 ± 0.1917 0.9500 ± 0.1508 0.8522 ± 0.2271 0.8233 ± 0.2371 0.7917 ± 0.2462 

Para k = 3 k = 3 k = 3 k = 3 k = 3 k = 3 

Table 2 

Clustering accuracy of the evaluated algorithms on BaseTwo and its variations. 

Data set BaseTwo IrrTwo1 IrrTwo2 CorTwo1 CorTwo2 CorTwo3 

DP-MD-FN ACC 1.0 1.0 1.0 1.0 1.0 1.0 

Para d c = 6% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 d c = 4% , t = 30 

K-Prototypes ACC 1.0 ± 0.0 1.0 ± 0.0 0.9981 ± 0.0019 0.9889 ± 0.0719 0.9889 ± 0.0719 0.9556 ± 0.1405 

Para γ = 2 . 0 γ = 0 . 5 γ = 0 . 9 γ = 0 . 5 γ = 0 . 5 γ = 0 . 5 

KL-FCM-GM ACC 1.0 ± 0.0 1.0 ± 0.0 0.3544 ± 0.030 1.0 ± 0.0 0.8200 ± 0.0029 0.7667 ± 0.0 

Para λ = 0 . 7 λ = 1 . 6 λ = 2 . 1 λ = 0 . 6 λ = 2 . 1 λ = 0 . 5 

EKP ACC 0.8916 ± 0.1583 0.8961 ± 0.1583 0.8961 ± 0.1583 0.7869 ± 0.0676 0.6453 ± 0.0413 0.5417 ± 0.0 

Para γ = 1 . 7 γ = 1 . 8 γ = 1 . 2 γ = 1 . 3 γ = 0 . 8 γ = 1 . 2 

OCIL ACC 0.9111 ± 0.1787 0.9868 ± 0.0648 0.9909 ± 0.0524 0.9876 ± 0.0715 0.9071 ± 0.1819 0.9084 ± 0.1420 

Para k = 3 k = 3 k = 3 k = 3 k = 3 k = 3 
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rrOne1 adds a categorical attribute which is an irrelevant attribute

nd only has a random relationship with the predicted class. Based

n IrrOne1 data set, IrrOne2 adds another irrelevant categorical at-

ribute. In addition to IrrOne1, we generate three data sets which

ave some corrupted categorical attributes. CorOne1, CorOne2 and

orOne3 are generated based on the BaseOne data set by succes-

ively mixing up 20%, 40%, and 60% of the third attribute values for

ne class with the other two classes. 

The second base data set, BaseTwo data set, has 360 data

oints, equally distributed into three classes: G 1 , G 2 , G 3 . Each data

oint consists of two categorical attributes and two numerical at-

ributes. The categorical attribute values are assigned to each class

n equal proportion. Categorical attribute 1 has a unique cate-

orical value for each class. And categorical attribute 2 has two

istinct categorical values assigned to each class. The numerical

ttribute values are generated by sampling normal distributions

ith different means and standard deviations for each class. For

he first class, the two numerical attributes are distributed as

( μ = 3 , σ = 1 ) and N( μ = 5 , σ = 3 ) ; for the second class, the

istributions are N( μ = 9 , σ = 1 ) and N( μ = 9 , σ = 3 ) ; for the

hird class, N( μ = 15 , σ = 1 ) and N( μ = 13 , σ = 3 ) . It means that

he first numerical attribute can make the three classes apart from

ach other, and the first numerical attribute cannot. Based on

aseTwo data set, IrrTwo1 adds a numerical attribute which is an

rrelevant attribute and only has a random relationship with the

redicted class. Based on IrrTwo1 data set, IrrTwo2 adds another

rrelevant numerical attribute. In addition to IrrTwo2, we gener-

te three other data sets which have some corrupted numerical

ttributes. CorTwo1, CorTwo2 and CorTwo3 are generated based

n the BaseTwo data set by successively mixing up 20%, 40%, and

0% of the second numerical attribute values for one class with the

ther two classes. 

The partitional structures generated by the five clustering meth-

ds are evaluated using clustering accuracy measure. Table 1 shows

he results of the evaluated algorithms on the BaseOne set and its

ariations. Table 1 shows the results of the evaluated algorithms

ver different synthetic data sets only containing categorical at-

ributes. On the BaseTwo set and its variations, the ACC values gen-

rated by these methods are listed in Table 2 . For every data set,
he ACC values of the best performance method are in bold, which

akes them really stand out. Comparisons with other methods il-

ustrate the superior performance of the proposed approach. 

In order to make results clear, the effects of the corrupted at-

ribute are plotted in Fig. 5 and the effects of the irrelevant at-

ributes are plotted in Fig. 6 . It is obvious that results obtained by

P-MD-FN are not affected by the corrupted attributes. As seen

n Fig. 5 (a), the proposed method generates the optimal struc-

ure of clusters on these eight synthetic data sets. We conjecture

hat although the third attribute or the second numerical attribute

s corrupted, the attribute has little contribution to the similar-

ty value and the remaining attributes contributions remain high.

onsequently, these noisy attributes have no effect on the parti-

ional structures generated by our method. As seen in Fig. 5 (b), as

he percentage of the noise in the numerical attribute increases,

here is little deterioration. But when the categorical attribute is

orrupted, the ACC values generated by K-Modes (or K-Prototypes)

ecrease significantly. As seen in Fig. 5 (c), KL-FCM-GM shows the

pposite effect. Like DP-MD-FN, it is one of the most robust meth-

ds for noisy in the categorical attribute. But KL-FCM-GM is more

ensitive to the corrupted numerical attribute. Analogous to KL-

CM-GM, EKP shows very little deterioration in the categorical at-

ribute. But as the percentage of the noise in the numerical at-

ribute increases, its performance deteriorates quite rapidly. Un-

ike other methods, OCIL does not perform very well on the two

ase data sets. It is interesting to observe that as the percentage of

he noise in the numerical attribute increases, its performance im-

roves. We conjecture that a certain level (about 20%) of the noise

s introduced into the numerical attribute, the contribution of the

umerical attributes to the similarity value is depleted. However,

hen we continue to increase the noise, the ACC values generated

y OCIL descend. Of the five algorithms, the proposed method is

he most robust and generates the optimal structure of clusters on

ata sets with noise. 

As seen in Fig. 6 (a), the proposed method generates the optimal

tructure of clusters on these six synthetic data sets. It is obvious

hat results obtained by DP-MD-FN are not affected by these ad-

itional irrelevant attributes. As seen in Fig. 6 (b), when the num-

er of the irrelevant categorical attributes increases, the ACC val-
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Fig. 5. The effects of the corrupted attributes. 
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Fig. 6. The effects of the irrelevant attributes. 
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Table 3 

The details of the categorical data sets. 

Data Sets Cluster Dimension N 

LED Display Domain 10 7 500 

Tic-Tac-Toe Game 2 9 958 

Congressional Voting 2 16 232 

Mushroom 2 22 5644 

Soybean 4 35 47 
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ues generated by K-Modes (or K-Prototypes) decrease significantly.

However, as the number of the irrelevant numerical attributes in-

creases, there is little deterioration. As seen in Fig. 6 (c), KL-FCM-

GM shows the opposite effect. Like DP-MD-FN, it generates the op-

timal structure of clusters on these data sets containing the irrel-

evant categorical attributes. But KL-FCM-GM is more sensitive to

the irrelevant numerical attributes. Especially, it does an extremely

poor job in clustering IrrTwo2 data set. Analogous to K-Modes, EKP

shows deterioration when the number of the irrelevant categori-

cal attributes increases. It generates the optimal structure of clus-

ters on the BaseTwo data set. However, the irrelevant numerical

attributes have no effect on EKP’s results, as seen in Fig. 6 (d). It

is interesting to observe that as the number of the irrelevant at-

tributes increases, its performance improves. We conjecture that

as the number of the irrelevant attributes increases, the contribu-

tion of the relevant attributes to the similarity value rises. As a

result, the ACC values generated by OCIL ascend. Of the five algo-

rithms, the proposed method is the most robust and generates the

optimal structure of clusters on data sets containing the irrelevant

attributes. 

Figs. 7 and 8 display the decision graph and γ -graph results of

the proposed algorithm for clustering the IrrOne1 data set and the

CorTwo3 data set in all d c parameter values, respectively. The γ -

graph results generated by our algorithm have great performance.

The γ values of centers are far greater than those of the other

points. The proposed automatic cluster center selection method

can find the right number of clusters based on the γ -graph results.

We can see in the γ -graph 2 or 3 points ( Figs. 7 or 8 ) standing out

the others. The selected cluster centers are represented in different

color (yellow, blue and green). The corresponding decision graphs

obtained by propagation of the label are also showed in Figs. 7 and

8 . Note that the γ -graphs in Figs. 7 and 8 show the sorted gamma

values. From the decision graphs in Figs. 7 and 8 , it is easy to see

that the selected cluster centers have anomalously large δ and rel-

atively large ρ , as described in original paper [9] . Furthermore, it is

worth noting that the γ values of the selected cluster centers are

far larger than those of the other points. Therefore, it is insensitive

to the choice of the parameter t . 

Fig. 9 shows the ACC values obtained by the proposed algorithm

in the above cases. It is obvious that the proposed algorithm gen-

erates the optimal structure of clusters regardless of the value of

the d c parameter d c . In other words, the proposed method is ro-

bust with respect to choosing d c . 

Generally, of the five methods, DP-MD-FN is the most robust

and does an excellent job when the degradation levels or the num-

ber of the irrelevant attributes increases. Also, it is insensitive to

the choice of d c . 

5.2.2. Scalability tests 

In this sub-section, we test the scalability of the DP-MD-FN al-

gorithm on some synthetic data sets. In these experiments, all syn-

thetic data sets are generated by a synthetic data generator ( http:

//www.datasetgenerator.com ). From the earlier discussions, we can

know that the proposed algorithm is the generalization of the DP

clustering algorithm. It means that our algorithm and DP have the

same scalability for handling numerical values. In order to make

the research target-oriented, we generate these data sets contain-

ing only categorical attributes. The scalability tests of the proposed

algorithm can fall into four categories. The first category tests the

time varies with change of the number of objects when the num-

bers of attributes, attribute values and clusters are kept fixed. The

second one is the scalability against the number of attributes for

given numbers of objects, attribute values and clusters. The third

one is the scalability against the number of attribute values for

given number of objects and attributes and clusters. The last cat-

egory of the tests is that the numbers of objects, attributes and
ttribute values are kept fixed and the number of clusters is var-

ed. 

Fig. 10 shows the execution time of the proposed algorithm to

luster objects ( N = 10 0 0 , 20 0 0 , 30 0 0 , 40 0 0 , 50 0 0 ) with 5 cat-

gorical attributes, each of which contains 5 attribute values, into

 clusters. We run the proposed algorithm 10 times on each data

et and get the average. In Fig. 10 , the y-axis shows the execution

ime of DP-MD-FN in seconds, and the x-axis shows the number of

bjects. To be convenient, each attribute includes the same num-

er of values on each data sets. This is applied to the following

ases. One important observation from Fig. 10 is that DP-MD-FN’s

unning time is polynomial. The main reason for this that is the

riginal method need to compute the pairwise distance between

airs of objects. The cost of this calculation itself is O( N 

2 ). 

Fig. 11 shows the execution time of the proposed algo-

ithm to cluster 10 0 0 objects with categorical attributes ( M =
 , 10 , 15 , 20 , 25 ), each of which contains 5 attribute values, into

 clusters. As described above, we run the proposed algorithm 10

imes on each data set and get the average. In Fig. 11 , the y-axis

hows the execution time of DP-MD-FN in seconds, and the x-axis

hows the number of attributes. Our algorithm scales linearly with

he number of attributes, as shown in Fig. 11 . This is distinct from

he previous analysis in Section 4.4 . The reason for this result may

e that MATLAB has a very strong processing capability for matrix

anipulations. 

Fig. 12 shows the execution time of the proposed algorithm to

luster 10 0 0 objects with 5 categorical attributes, each of which

ontains attribute values ( r = 5 , 10 , 15 , 20 , 25 ), into 5 clusters.

s previously described, we run the proposed algorithm 10 times

n each data set and get the average. In Fig. 12 , the y-axis shows

he execution time of DP-MD-FN in seconds, and the x-axis shows

he number of attribute values. Fig. 12 shows that the curve of the

xecution time using our algorithm is almost flat. It means that

he running speed of DP-MD-FN is not dependent on the number

f attribute values. 

Fig. 13 shows the execution time of the proposed algorithm to

luster 10 0 0 objects with 5 categorical attributes, each of which

ontains 5 attribute values, into clusters ( k = 5 , 10 , 15 , 20 , 25 ).

ike all previous tests, we run the proposed algorithm 10 times on

ach data set and get the average. In Fig. 13 , the y-axis shows the

xecution time of DP-MD-FN in seconds, and the x-axis shows the

umber of clusters. Fig. 13 shows that the curve of the execution

ime using our algorithm is almost flat. It means that the running

peed of DP-MD-FN is independent of the number of clusters. 

.3. Experiments on real-world data sets 

The Categorical data sets used in the experiment are taken from

he UCI Machine Learning Repository, including LED Display Do-

ain, Tic-Tac-Toe Game, Congressional Voting Records, Mushroom

nd Soybean. The details of these data sets are listed in Table 3 .

t is important to note that the LED Display Domain data set is

 sample of 500 objects obtained from the original data generator.

hus, the LED Display Domain data set consists of 500 objects with

 categorical attributes. The data objects can be divided into ten

lasses. Also, there are a few missing values in the Congressional

http://www.datasetgenerator.com
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Fig. 7. The decision graphs of DP-MD-FN on the IrrOne1 data set. 
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oting Records data set. A complete version of this data set has

35 objects. To facilitate handling this data set, we use a cleaned

ersion (where objects with missing values are not included) con-

isting of 232 objects. The Congressional Voting Records data set

onsists of 232 samples with 16 categorical attributes. Similar to

he Congressional Voting Records data set, there are a few missing

alues in the Mushroom data set. A complete version of this data

et has 8124 objects. We use a cleaned version consisting of 5644

bjects. 
n  
The mixed type data sets used in the experiment also are all

aken from the UCI Machine Learning Repository, including South

frican Hearth, Heart, Australian Credit Approval, Credit Approval,

ank Marketing and KDD Cup 1999. The details of these data sets

re listed in Table 4 . Similar to the Congressional Voting Records

ata set, there are a few missing values in the Credit Approval

ata set. A complete version of this data set has 690. To facilitate

andling this data set, we use a cleaned version with 653 objects.

hus, the Credit Approval data set consists of 653 samples with six

umerical and nine categorical attributes. Also a complete version
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Fig. 8. The decision graphs of DP-MD-FN on the CorTwo3 data set. 
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of the KDD Cup 1999 data set has 4,0 0 0,0 0 0 objects. Our device

cannot process such a large data set due to the limitations of the

memory. Since we use a subset of the KDD Cup 1999 data set has

20 0 0 objects, equally distributed into four classes. However, there

is no difference in the attributes and each object has 26 numerical

and 15 categorical attributes. 

5.3.1. Experiments on categorical data sets 

In Table 5 , we list the clustering accuracy of our proposed algo-

rithm, K-Modes (K-Prototypes), KL-FCM-GM, EKP and OCIL on cate-

gorical data sets. As we can see, DP-MD-FN results are better than
hose obtained by other methods for these four data sets. Also, the

roposed method finds the optimal structure of clusters in clus-

ering the Soybean data set, while others do not. The main reason

or this is that these comparison partners are sensitive to initial-

zation and is more suitable for spherical distribution data. Rela-

ively, based on the DP clustering algorithm, DP-MD-FN can deal

ith non- spherical distribution data. 

In Table 6 , we list the five evaluated algorithms generating the

MI values on categorical data sets. Our method shows a small ad-

antage compared with others on LED Display Domain and Tic-Tac-
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Fig. 9. The results of DP-MD-FN on IrrOne1 and CorTwo3 data sets. 

Fig. 10. The execution time vs. the number of objects. 

Table 4 

The details of the mixed type data sets. 

Data Sets Cluster Dimension ( M n + M c ) N 

South African Hearth 2 8 + 1 462 

Heart 2 6 + 7 270 

Australian Credit Approval 2 6 + 8 690 

Credit Approval 2 6 + 9 653 

Bank Marketing 2 7 + 9 4521 

KDD Cup 1999 4 26 + 15 20 0 0 

Fig. 11. The execution time vs. the number of attributes. 

Fig. 12. The execution time vs. the number of attribute values. 
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Table 5 

The ACC values of the evaluated algorithms on categorical data sets. 

Data set LED Display Domain Tic-Tac-Toe Game 

DP-MD-FN ACC 0.6860 0.6628 

Para d c = 4% , t = 20 d c = 1% , t = 40 

K-Modes ACC 0.5382 ± 0.0583 0.5649 ± 0.0310 

Para k = 10 k = 2 

KL-FCM-GM ACC 0.5390 ± 0.0452 0.6534 ± 0 

Para k = 10 , λ = 0 . 8 k = 2 , λ = 1 . 5 

EKP ACC 0.5768 ± 0.0410 0.5533 ± 0.0283 

Para k = 10 k = 2 

OCIL ACC 0.5872 ± 0.0737 0.5585 ± 0.0290 

Para k = 10 k = 2 
oe Game data sets. Beyond that, the NMI values obtained by DP-

D-FN are significantly superior to those obtained by other meth-

ds. 

In Table 7 , we list the five evaluated algorithms generating the

RI values on categorical data sets. DP-MD-FN yields the best re-

ults among the five algorithms on three out of the five categorical

ata sets. Although our method slightly inferiors to OCIL (the best

erformance) on the LED Display Domain and Congressional Vot-
Congressional Voting Mushroom Soybean 

0.9181 0 .8540 1.0 

d c = 4% , t = 20 d c = 2% , t = 20 d c = 6% , t = 5 

0.8694 ± 0.0054 0 .8161 ± 0.1090 0.8404 ± 0.1522 

k = 2 k = 2 k = 4 

0.8879 ± 0 0 .8436 ± 0.0186 0.9617 ± 0.0814 

k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 8 k = 4 , λ = 1 . 8 

0.8664 ± 0 0 .8522 ± 0 0.9723 ± 0.0144 

k = 2 k = 2 k = 4 

0.8931 ± 0.0018 0 .5957 ± 0.0880 0.9362 ± 0.1346 

k = 2 k = 2 k = 4 



308 S. Ding et al. / Knowledge-Based Systems 133 (2017) 294–313 

Table 6 

The NMI values of the evaluated algorithms on categorical data sets. 

Data set LED Display Domain Tic-Tac-Toe Game Congressional Voting Mushroom Soybean 

DP-MD-FN NMI 0.5303 0.0183 0.5967 0 .4396 1.0 

Para d c = 4% , t = 20 d c = 1% , t = 40 d c = 4% , t = 20 d c = 2% , t = 20 d c = 6% , t = 5 

K-Modes NMI 0.4952 ± 0.04 4 4 0.0125 ± 0.0206 0.4587 ± 0.0264 0 .3606 ± 0.1093 0.8441 ± 0.1310 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

KL-FCM-GM NMI 0.5135 ± 0.0224 0.0017 ± 0 0.5111 ± 0 0 .3992 ± 0.0615 0.9 ± 0.1009 

Para k = 10 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 8 k = 4 , λ = 1 . 8 

EKP NMI 0.5201 ± 0.0128 0.0094 ± 0.0081 0.4462 ± 0 0 .4187 ± 0 0.9322 ± 0.0299 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

OCIL NMI 0.5223 ± 0.0378 0.0072 ± 0.0020 0.5344 ± 0.0045 0 .0598 ± 0.1150 0.9441 ± 0.1178 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

Table 7 

The ARI values of the evaluated algorithms on categorical data sets. 

Data set LED Display Domain Tic-Tac-Toe Game Congressional Voting Mushroom Soybean 

DP-MD-FN ARI 0.4248 0.0552 0.5737 0 .4933 1.0 

Para d c = 4% , t = 20 d c = 1% , t = 40 d c = 4% , t = 20 d c = 2% , t = 20 d c = 6% , t = 5 

K-Modes ARI 0.3699 ± 0.0641 0.0165 ± 0.0188 0.5440 ± 0.0162 0 .4297 ± 0.1403 0.7680 ± 0.2005 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

KL-FCM-GM ARI 0.3928 ± 0.0256 0 ± 0 0.5869 ± 0 0 .4656 ± 0.0472 0.9532 ± 0.0988 

Para k = 10 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 8 k = 4 , λ = 1 . 8 

EKP ARI 0.4105 ± 0.0052 0.0094 ± 0.0081 0.5349 ± 0 0 .4885 ± 0 0.9179 ± 0.0415 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

OCIL ARI 0.4305 ± 0.0492 0.0130 ± 0.0109 0.6165 ± 0.0058 0 .0625 ± 0.1438 0.9185 ± 0.1719 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

Table 8 

The F 1 values of the evaluated algorithms on categorical data sets. 

Data set LED Display Domain Tic-Tac-Toe Game Congressional Voting Mushroom Soybean 

DP-MD-FN F 1 0.2831 0.7866 0.8814 0 .8944 1.0 

Para d c = 4% , t = 20 d c = 1% , t = 40 d c = 4% , t = 20 d c = 2% , t = 20 d c = 6% , t = 5 

K-Modes F 1 0.1538 ± 0.1078 0.6436 ± 0.0199 0.8680 ± 0.0070 0 .8575 ± 0.0945 0.7622 ± 0.2199 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

KL-FCM-GM F 1 0.4586 ± 0.0219 0.7069 ± 0 0.7957 ± 0 0 .7729 ± 0.0252 0.9491 ± 0.1074 

Para k = 10 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 5 k = 2 , λ = 1 . 8 k = 4 , λ = 1 . 8 

EKP F 1 0.4773 ± 0.0028 0.5303 ± 0.0079 0.7672 ± 0 0 .7833 ± 0 0.9382 ± 0.0314 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

OCIL F 1 0.2182 ± 0.0986 0.6275 ± 0.0504 0.8926 ± 0.0016 0 .6163 ± 0.0954 0.9143 ± 0.1807 

Para k = 10 k = 2 k = 2 k = 2 k = 4 

Fig. 13. The execution time vs. the number of clusters. 
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ing data sets, the ARI values of the clusters formed by these two

methods are close, within a difference of 0.05 (within a difference

of 0.01 on the LED Display Domain data set). 
In Table 8 , we list the five evaluated algorithms generating the

 1 values on categorical data sets. DP-MD-FN yields the best results

mong the five algorithms on three out of the five categorical data

ets. 

.3.2. Experiments on mixed type data sets 

In Table 9 , we list the clustering accuracy of our proposed algo-

ithm, K-Prototypes, KL-FCM-GM, EKP and OCIL on mixed type data

ets. In Table 10 , we list the five evaluated algorithms generating

he NMI values on mixed type data sets. Tables 11 and 12 show the

RI and F 1 values of the five evaluated algorithms, respectively. In

ll cases, both the NMI values and the ARI values of the DP-MD-FN

olutions are better than those found by other methods. DP-MD-

N yields the best results among the five algorithms on five out of

he six categorical data sets according to the ACC and F 1 values. On

he South African Hearth data set, our algorithm and KP tie for first

lace in term of the ACC and ARI values, while our method shows a

mall advantage compared with KP in term of the NMI and F 1 val-

es. All validity indexes of the proposed method are significantly

uperior to those of other methods on the Credit Approval data set.

xperimental results on the Credit Approval data set show that the

CC value of the proposed method is 6.51%, 27.54%, 31.55%, 20.34%,

espectively higher than K-Prototypes, KL-FCM-GM, EKP and OCIL.

nd the F 1 value of the proposed method is 7.73%, 26.35%, 19.37%,

0.68%, higher than K-Prototypes, KL-FCM-GM, EKP and OCIL, re-

pectively Both the NMI value and the ARI value of the proposed
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Table 9 

The ACC values of the evaluated algorithms on mixed type data sets. 

Data set South African Hearth Heart Australian Credit Approval Credit Approval Bank Marketing KDD Cup 1999 

DP-MD-FN ACC 0.6537 0.8148 0.8551 0.8668 0 .6357 0.9875 

Para d c = 1% , t = 20 d c = 2% , t = 20 d c = 4% , t = 15 d c = 6% , t = 20 d c = 0 . 5% ,t = 40 d c = 6% , t = 5 

K-Prototypes ACC 0.6537 ± 0 0.7830 ± 0.0445 0.7955 ± 0.0180 0.8017 ± 0.0122 0 .6134 ± 0.0817 0.7500 ± 0 

Para k = 2 , γ = 0 . 3 k = 2 , γ = 0 . 2 k = 2 , γ = 1 . 0 k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 2 k = 4 , γ = 1 . 2 

KL-FCM-GM ACC 0.5584 ± 0 0.7926 ± 0 0.8319 ± 0 0.5914 ± 0.0847 0 .5400 ± 0.0133 0.7714 ± 0.0565 

Para k = 2 , λ = 0 . 5 k = 2 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 0 . 3 k = 2 , λ = 0 . 3 k = 4 , λ = 2 . 0 

EKP ACC 0.6303 ± 0.0082 0.5926 ± 0 0.5590 ± 0.0014 0.5513 ± 0 0 .8848 ± 0 0.5048 ± 0.0035 

Para k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 7 k = 2 , γ = 1 . 1 k = 2 , γ = 1 . 3 k = 2 , γ = 0 . 7 k = 4 , γ = 0 . 6 

OCIL ACC 0.6301 ± 0.0027 0.7411 ± 0.0678 0.6668 ± 0.0382 0.6634 ± 0.0407 0 .6245 ± 0.0372 0.2500 ± 0 

Para k = 2 k = 2 k = 2 k = 2 k = 2 k = 4 

Table 10 

The NMI values of the evaluated algorithms on mixed type data sets. 

Data set South African Hearth Heart Australian Credit Approval Credit Approval Bank Marketing KDD Cup 1999 

DP-MD-FN NMI 0.0545 0.2791 0.4264 0.4482 0 .0130 0.9637 

Para d c = 1% , t = 20 d c = 2% , t = 20 d c = 4% , t = 15 d c = 6% , t = 20 d c = 0 . 5% ,t = 40 d c = 6% , t = 5 

K-Prototypes NMI 0.0494 ± 0.0161 0.2549 ± 0.0600 0.2848 ± 0.0313 0.2894 ± 0.0291 0 .0056 ± 0.0030 0.7391 ± 0.0011 

Para k = 2 , γ = 0 . 3 k = 2 , γ = 0 . 2 k = 2 , γ = 1 . 0 k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 2 k = 4 , γ = 1 . 2 

KL-FCM-GM NMI 0.0097 ± 0 0.2636 ± 0 0.3431 ± 0 0.0726 ± 0.0755 0 .0096 ± 0.0046 0.7215 ± 0.0848 

Para k = 2 , λ = 0 . 5 k = 2 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 0 . 3 k = 2 , λ = 0 . 3 k = 4 , λ = 2 . 0 

EKP NMI 0.0031 ± 0.0002 0.0196 ± 0 0.0048 ± 0.0011 0.0053 ± 0 0 .0013 ± 0 0.4056 ± 0.0028 

Para k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 7 k = 2 , γ = 1 . 1 k = 2 , γ = 1 . 3 k = 2 , γ = 0 . 7 k = 4 , γ = 0 . 6 

OCIL NMI 0.0460 ± 0.0013 0.1860 ± 0.0651 0.0904 ± 0.0308 0.0948 ± 0.0329 0 .0056 ± 0.0029 0.0015 ± 0 

Para k = 2 k = 2 k = 2 k = 2 k = 2 k = 4 

Table 11 

The ARI values of the evaluated algorithms on mixed type data sets. 

Data set South African Hearth Heart Australian Credit Approval Credit Approval Bank Marketing KDD Cup 1999 

DP-MD-FN ARI 0.0903 0.3942 0.5036 0.5374 0 .0393 0.9675 

Para d c = 1% , t = 20 d c = 2% , t = 20 d c = 4% , t = 15 d c = 6% , t = 20 d c = 0 . 5% ,t = 40 d c = 6% , t = 5 

K-Prototypes ARI 0.0903 ± 0 0.3227 ± 0.0793 0.3493 ± 0.0428 0.3635 ± 0.0300 0 .0060 ± 0.0281 0.7098 ± 0.0 0 03 

Para k = 2 , γ = 0 . 3 k = 2 , γ = 0 . 2 k = 2 , γ = 1 . 0 k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 2 k = 4 , γ = 1 . 2 

KL-FCM-GM ARI 0.0117 ± 0 0.3400 ± 0 0.4395 ± 0 0.0553 ± 0.1082 0 .0052 ± 0.0055 0.6646 ± 0.0948 

Para k = 2 , λ = 0 . 5 k = 2 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 0 . 3 k = 2 , λ = 0 . 3 k = 4 , λ = 2 . 0 

EKP ARI 0.0183 ± 0.0064 0.0302 ± 0 0.4570 ± 0.0323 0 .0019 ± 0 0 ± 0 0.3302 ± 0.0 0 02 

Para k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 7 k = 2 , γ = 1 . 1 k = 2 , γ = 1 . 3 k = 2 , γ = 0 . 7 k = 4 , γ = 0 . 6 

OCIL ARI 0.0654 ± 0.0030 0.2455 ± 0.0872 0.1113 ± 0.0408 0.1086 ± 0.0393 0 .0188 ± 0.0010 0 ± 0 

Para k = 2 k = 2 k = 2 k = 2 k = 2 k = 4 

Table 12 

The F 1 values of the evaluated algorithms on mixed type data sets. 

Data set South African Hearth Heart Australian Credit Approval Credit Approval Bank Marketing KDD Cup 1999 

DP-MD-FN F 1 0.7752 0.8276 0.8503 0.8621 0 .2602 0.9756 

Para d c = 1% , t = 20 d c = 2% , t = 20 d c = 4% , t = 15 d c = 6% , t = 20 d c = 0 . 5% ,t = 40 d c = 6% , t = 5 

K-Prototypes F 1 0.7203 ± 0 0.8010 ± 0.0497 0.7781 ± 0.0047 0.7848 ± 0.0054 0 .2018 ± 0.0587 0.6667 ± 0.0011 

Para k = 2 , γ = 0 . 3 k = 2 , γ = 0 . 2 k = 2 , γ = 1 . 0 k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 2 k = 4 , γ = 1 . 2 

KL-FCM-GM F 1 0.5272 ± 0 0.6710 ± 0 0.7281 ± 0 0.5986 ± 0.0377 0 .6172 ± 0.0014 0.7598 ± 0.0608 

Para k = 2 , λ = 0 . 5 k = 2 , λ = 0 . 8 k = 2 , λ = 1 . 5 k = 2 , λ = 0 . 3 k = 2 , λ = 0 . 3 k = 4 , λ = 2 . 0 

EKP F 1 0.6420 ± 0.0227 0.5306 ± 0 0.6703 ± 0.5217 0 .6684 ± 0 0 .8864 ± 0 0.5683 ± 0.0 0 05 

Para k = 2 , γ = 0 . 1 k = 2 , γ = 0 . 7 k = 2 , γ = 1 . 1 k = 2 , γ = 1 . 3 k = 2 , γ = 0 . 7 k = 4 , γ = 0 . 6 

OCIL F 1 0.5295 ± 0.0962 0.7746 ± 0.0244 0.4584 ± 0.1527 0.4553 ± 0.1570 0 .2280 ± 0.0019 0.4 ± 0 

Para k = 2 k = 2 k = 2 k = 2 k = 2 k = 4 
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ethod is one order of magnitude higher than those of KL-FCM-

M, EKP and OCIL. On Bank Marketing data set, all objects are di-

ided into two classes, “yes” (class #1), including 40 0 0 objects, and

no” (class #2), including 521 objects. According to its class distri-

ution, this data set is a typical imbalanced data set. Its imbalance

atio value is higher than 7. On this data set, our method shows

 small advantage compared with others in terms of the NMI and

RI values. It is notable that EKP obtains the best performance in

erms of the ACC and F 1 values, but performs very poor in terms

f the NMI and ARI values. The ACC and F 1 indexes are unsuit-

ble for imbalanced data sets. A method divides all objects into

wo classes, cluster #1 including only 1 object, cluster #2 including
thers. When the data set is imbalanced, the method obtains very

igh ACC and F 1 values. However, we think the result is not a good

erformance. As a result, we think EKP does not reveal good struc-

ure of clusters on Bank Marketing data set. Experimental results

n the KDD Cup 1999 data set show that the ACC value of the pro-

osed method is 21.61% higher than that of the second-best result

i.e., KL-FCM-GM). Actually, when the parameter d c is set to 8% or

igher values, the proposed method can find the optimal structure

f clusters on the data set. However, these values are out of range

hich is defined in the beginning of this section. As can be seen

rom Tables 5–12 , all validity indexes obtained by DP-MD-FN are,

n most cases, superior to those obtained by other methods. In ad-
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Fig. 14. The decision graphs of DP-MD-FN on the Congressional Voting data set. 

 

 

 

 

 

 

 

 

 

Table 13 

Average ranking of clustering algorithms based on the ACC value. 

Algorithm DP-MD-FN K-Prototypes KL-FCM-GM EKP OCIL 

Ranking 1 .0909 3 .4545 3 .1818 3 .6364 3 .6364 

n  

1

D  
dition, as the number of the attributes increases, the performance

of the proposed method does not deteriorate. And it can even find

the optimal structure of clusters on Soybean and KDD Cup 1999

data sets which have more number of attributes compared with

others. 

In Table 13 , we list the average ranking of clustering algorithms

obtained by the Friedman’s test based on the ACC value. The pro-

posed DP-MD-FN algorithm is ranked first. It is worth noting that

K-prototypes is an extension of K-Modes. Therefore, we treat K-

prototypes and K-Modes as one algorithm. As a consequence, the
umber of algorithms k a is 5 and the number of data sets n ds is

1. The p -value computed by the Friedman test and the Iman–

avenport test are given in Table 14 , which both are smaller than
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Fig. 15. The decision graphs of DP-MD-FN on the Bank Marketing data set. 

Table 14 

Results of Friedman’s and Iman–Davenport’s tests based on the 

ACC value. 

Method Statistical value p -value Hypothesis 

Friedman 20 .6546 0 .0 0 04 Rejected 

Iman–Davenport 8 .8474 0 .0 0 0 03 Rejected 

0  

j  

o

 

s  

A  

r  

t

 

o  
.05. Thus the null hypothesis of equivalent performance are re-

ected. That means significant differences among the performance

f all the clustering algorithms do exist. 

The same procedure is performed to check whether there are

ignificant differences in terms of the other validity indexes (NMI,

RI and F 1 ). Tables 15 –20 show that the proposed algorithm is

anked first and there are significant differences in the results of

he algorithms. 

Figs. 14 and 15 display the decision graph and γ -graph results

f the proposed algorithm for clustering the Congressional Vot-
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Fig. 16. The results of DP-MD-FN on Congressional Voting and Bank Marketing. 

Table 15 

Average ranking of clustering algorithms based on the NMI value. 

Algorithm DP-MD-FN K-Prototypes KL-FCM-GM EKP OCIL 

Ranking 1 3 .1818 3 .2727 4 3 .5454 

Table 16 

Results of Friedman’s and Iman–Davenport’s tests based on the NMI 

value. 

Method Statistical value p -value Hypothesis 

Friedman 23 .7818 0 .0 0 0 08 Rejected 

Iman–Davenport 11 .7626 0 .0 0 0 0 02 Rejected 

Table 17 

Average ranking of clustering algorithms based on the ARI value. 

Algorithm DP-MD-FN K-Prototypes KL-FCM-GM EKP OCIL 

Ranking 1 .2727 3 .2727 3 .3636 3 .8182 3 .2727 

Table 18 

Results of Friedman’s and Iman–Davenport’s tests based on the 

ARI value. 

Method Statistical value p -value Hypothesis 

Friedman 17 .3091 0 .0017 Rejected 

Iman–Davenport 6 .4850 0 .0 0 04 Rejected 

Table 19 

Average ranking of clustering algorithms based on the F 1 value. 

Algorithm DP-MD-FN K-Prototypes KL-FCM-GM EKP OCIL 

Ranking 1 .4545 3 .0909 3 .1818 3 .3636 3 .9091 

Table 20 

Results of Friedman’s and Iman–Davenport’s tests based on the F 1 
value. 

Method Statistical value p -value Hypothesis 

Friedman 14 .9091 0 .0049 Rejected 

Iman–Davenport 5 .1250 0 .0020 Rejected 
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ng data set and the Bank Marketing data set in all d c parame-

er values, respectively. The γ -graph results generated by our al-

orithm have a great performance. The γ values of centers are far

reater than those of the other points. From the decision graphs,

e can see that the global distribution of the points is a “straight

ine”, but the centers of the clusters are the outliers deviating from

he global distribution. The proposed automatic cluster center se-

ection method can find the right number of clusters based on

he γ -graph results. The selected cluster centers are represented

n different color (yellow and green). The corresponding decision

raphs obtained by propagation of the label are also showed in

igs. 14 and 15 . In addition, Fig. 16 shows the ACC values obtained

y the proposed algorithm in the above cases. We can see that the

urves of the ACC values of our algorithm are almost flat. It means

hat DP-MD-FN is still robust with respect to choosing d c when it

eals with real world data sets. 

. Discussion and conclusions 

Similarity measure and clustering algorithm are the two pri-

ary steps in clustering process. From the two aspects, we explore

he differences between the existing methods and DP-MD-FN. 

Firstly, we discuss similarity measure. Compared by some pre-

rocessing methods, the proposed similarity measure can better

eveal the structure of the data sets. K-Prototypes and its varia-

ions need to choose the parameter γ to avoid favoring either type

f attribute. However, experimental results show that the parame-

er has great influence on these algorithms. The proposed similar-

ty measure does not require the weight γ . Indeed, SBAC also does

ot need to adjust the parameter between categorical and numer-

cal values. However, a computational efficient similarity measure

emains to be developed. In addition, OCIL only can measure the

imilarity between an object and a cluster. Thus this point may be

 roadblock for the broad application of the similarity measure. We

resent a unified similarity metric for measuring numerical and

ategorical values. It does not need feature transformation and pa-

ameter adjustment between categorical and numerical values. The

trong points of such similarity measure are the ease of application

nd the broad coverage of the method, that is to say for the clus-

ering purpose of mixed type data. 

Secondly, we discuss clustering algorithm. Currently most al-

orithms have shortcomings including low clustering quality and

oor robustness. The main reason for this phenomenon may be

hat most methods, e.g. OCIL, KP and its variations, use the K-

eans paradigm to cluster mixed type data. Thus they are sensi-

ive to initialization and are generally unsuitable for non-spherical

istribution data. By contrast, we use peak density clustering algo-

ithm which is a density-based data clustering. DP is able to detect

on-spherical distribution data and does not need to pre-assign

he number of clusters. To further improve the robustness of DP,

e use fuzzy neighborhood relation to redefine the local density,

hich integrates the speed of DP clustering algorithm with the ro-

ustness of FJP algorithm. To avoid manually selecting the cluster

enters, we develop an automatic cluster center selection method.

e integrate this entropy-based strategy with the improved DP

lustering method so that they play their own strengths in order

o achieve higher clustering quality and better robustness. 

On the basis of the new criterion, the new local density and

he cluster center selection method, we develop an entropy-based

ensity peaks clustering algorithm for mixed type data employ-

ng fuzzy neighborhood (DP-MD-FN). We design 12 synthetic data

ets and compare our algorithm with some traditional clustering

or mixed type data on these data sets. Experimental results reveal

hat, of the five methods, DP-MD-FN is the most robust and does

n excellent job when the degradation levels or the number of the

rrelevant attributes increases. Also, it is less sensitive to the choice
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f d c . In addition, we design 17 synthetic data sets only containing

ategorical attributes and test the scalability of the proposed algo-

ithm. Finally, 11 UCI data sets are used to test the performance

f the proposed algorithm. In most cases, the results obtained by

P-MD-FN are superior to those obtained by other methods. 

Future works will develop an adaptive DP-MD-FN with non-

arametric method. DP-MD-FN costs much time in the calculation

f the similarity matrix, thus we will try to introduce the idea

f the grid into our method. The cost is only associated with the

umber of cells. And the number of cells K is far less than the

umber of objects N . 
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