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The density peaks clustering (DPC) algorithm is well known for its power on non-spherical distribution 

data sets. However, it works only on numerical values. This prohibits it from being used to cluster real 

world data containing categorical values and numerical values. Traditional clustering algorithms for mixed 

data use a pre-processing based on binary encoding. But such methods destruct the original structure 

of categorical attributes. Other solutions based on simple matching, such as K-Prototypes, need a user- 

defined parameter to avoid favoring either type of attribute. In order to overcome these problems, we 

present a novel clustering algorithm for mixed data, called DPC-MD. We improve DPC by using a new 

similarity criterion to deal with the three types of data: numerical, categorical, or mixed data. Compared 

to other methods for mixed data, DPC absolutely has more advantages to deal with non-spherical distri- 

bution data. In addition, the core of the proposed method is based on a new similarity measure for mixed 

data. This similarity measure is proposed to avoid feature transformation and parameter adjustment. The 

performance of our method is demonstrated by experiments on some real-world datasets in comparison 

with that of traditional clustering algorithms, such as K-Modes, K-Prototypes EKP and SBAC. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Clustering analysis has attracted a lot of research attention due

to its usefulness in many applications, including community detec-

tion, image processing, document processing, and so forth [1-7] .

Clustering analysis has attracted a lot of research attention due to

its usefulness in many applications, including most clustering al-

gorithms rely on the assumption that data simply contain numer-

ical values, but what should be dealt with is categorical values or

mixed data containing both numerical and categorical values on

data sets in the real world. For clustering algorithms dealing with

mixed data, the core of these methods is how to measure the sim-

ilarity for categorical attributes. Roughly, the existing clustering al-

gorithms for mixed data can fall into two categories according to

dealing with categorical attribute values. The first category of the

methods is based on the pre-processing methods. The original at-

tributes are transformed to new forms. Then, traditional distance

functions are used to measure the transformed data in the new

relation. The second category of approaches is based on similarity

metrics dealing with categorical values directly. 
∗ Corresponding author at: School of Computer Science and Technology, China 
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Traditional clustering algorithms for mixed data have a pre-

rocessing that is able to convert categorical attributes to new

orms and facilitates processing. Binary encoding is the most com-

on pre-processing method. This method transforms each cate-

orical attribute to a set of binary attributes. For example, Ralam-

ondrainy’s algorithm [8] transforms categorical attributes into a

et of binary attributes. Then, new forms are treated as numeric in

he K-Means algorithm. Hence, we can directly adopt most tradi-

ional distances which are often used in numerical clustering, such

s Euclidean distance, to define similarity between transformed ob-

ects. However, this method destructs the original structure of cate-

orical attributes. In other words, transformed binary attributes are

eaningless and their values are hard to interpret [9] . Apart from

inary encoding, there are also other pre-processing methods. For

xample, in order to handle categorical data, Hsu [10] presents a

ew mechanism, distance hierarchy, which encodes a data set into

 weighted tree structure. But it has a serious drawback that both

he assignment of weights and the construction of distance hierar-

hies rely on domain knowledge. 

In the respect of similarity metrics for categorical values, the

-Prototypes algorithm [11] is one of the most famous cluster-

ng algorithms for mixed data. Nevertheless, the choice of the

eight γ has a significant effect on clustering results. As a vari-

tion of K-Prototypes algorithm, evolutionary K-Prototypes algo-

ithm (EKP) [12] , an unsupervised evolutionary clustering algo-

http://dx.doi.org/10.1016/j.patrec.2017.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.07.001&domain=pdf
mailto:dingsf@cumt.edu.cn
http://dx.doi.org/10.1016/j.patrec.2017.07.001
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ithm for mixed type data, which integrates evolutionary compu-

ation framework with KP, also has a weight γ . Also, these algo-

ithms [13,14] take into account the significance of different at-

ributes towards the clustering process. However, a new param-

ter, the degree of fuzziness α, is introduced into these cluster-

ng algorithms. Hence, it will come out that choosing the param-

ter is a delicate and difficult task for users that may be a road-

lock for using K-Prototypes and its variations efficiently. In addi-

ion, some algorithms [15,16] use entropy-type measures to group

bjects. However, these methods only deal with categorical data

nstead of mixed data and these entropy-type criteria can only

easure the similarity between an object and a cluster. Besides,

CIL [17] gives a unified similarity metric which can be applied to

ixed data using the entropy-based criterion. This similarity met-

ic is also based on the concept of object-cluster similarity. In other

ords, it only can measure the similarity between an object and a

luster. In addition, OCIL is an iterative clustering algorithm. This

eans that this method requires a random initialization and may

rap into local optimum. Similar to OCIL, Lim, et al. [18] propose

 clustering framework for mixed attribute type dataset based on

he entropy concept. It also needs to adjust the parameter which

s used to balance attribute type between categorical attribute and

umerical one. Besides, Li and Biswas [9] propose a Similarity-

ased Agglomerative Clustering (SBAC) algorithm based on a new

imilarity metric that deals with the mixed data. But this method

s high computational complexity and only suitable for some small

ata sets. 

From the above discussion, most of clustering algorithms use

he K-Means paradigm to cluster data having values. It means that

hose methods have an iterative process and probably trap into lo-

al optimum. A new algorithm, density peaks clustering (DPC) [19] ,

roposed by Rodriguez and Laio is published in the US journal Sci-

nce. This algorithm is able to detect non-spherical clusters with-

ut specifying the number of clusters. And more important, DPC

oes not need to iterate. Some studies [20–24] have been going

n around this method. However, there are still some shortcom-

ngs. For example, DPC algorithm cannot find the correct number

f clusters automatically. In order to overcome this difficulty, Liang

nd Chen [25] propose the 3DC clustering based on the divide-

nd-conquer strategy and the density-reachable concept. Du et al.

26] propose a density peaks clustering based on k nearest neigh-

ors (DPC-KNN) which introduces the idea of k nearest neighbors

KNN) into DPC and has another option for the local density com-

utation. 

This paper presents a novel clustering algorithm, DPC-MD,

ased on a new similarity measure for mixed data. Actually, the

roposed algorithm is the generalization of the original DPC algo-

ithm. In order to assess the performance of the proposed algo-

ithm, we compare the proposed algorithm with other algorithms

n some UCI data sets. As a result, our algorithms have achieved

atisfactory results in most data sets. 

. Related works 

.1. Notations 

Let X = { x 1 , x 2 , · · · , x n } denote a dataset of n mixed data ob-

ects, where for each i , 1 ≤ i ≤ n , x i with m features consists of

 r numerical features and m o categorical features. Therefore, for

ach i , 1 ≤ i ≤ n , and for k , 1 ≤ k ≤ m r , let x (r) 
i,k 

be the k th fea-

ure of x (r) 
i 

, where x (r) 
i 

is the numerical part. Similarly, for each

 , and for k , 1 ≤ k ≤ m o , x (o) 
i,k 

denotes the k th feature of x (o) 
i 

,

here x (o) 
i 

is the categorical part. The domain of numerical fea-

ure F (r) 
k 

is represented by continuous values. And categorical fea-

ure F (o) 
k 

has t k categories, i.e., DOM ( F (o) 
k 

) = { f k, 1 , f k, 2 , · · · , f k, t } ,
k 
here DOM ( F (o) 
k 

) contains all possible values that can be chosen

y attribute F (o) 
k 

. Therefore, x i can be represented as [ x (r) 
i 

, x (o) 
i 

] =
 x (r) 

i, 1 
, x (r) 

i, 2 
, · · · , x (r) 

i, m r 
, x (o) 

i, m r +1 
, · · · , x (o) 

i,m 

] . 

Distance functions such as Euclidean distance are used as sim-

larity measure for numerical attribute. The Euclidean distance

ist( x i , x j ) between the object x i and the object x j is defined as:

ist 
(
x i , x j 

)
= 

∥∥x i − x j 

∥∥
2 
. (1) 

The definition of the information entropy H ( x ) is given, as fol-

ow: 

 ( x ) = −
∑ 

x ∈ V p ( x ) log ( p ( x ) ) . (2) 

here p ( x ) is the probability mass function of the random variable

. V is the finite set of possible outcomes of x . 

.2. Density peaks clustering 

Its idea is that cluster centers are characterized by a higher

ensity than their neighbors and by a relatively large distance

rom points with higher densities. This method utilizes two im-

ortant quantities: One is the local density ρ i of each point x i ,

nd the other is its distance δi from points of higher density. The

wo quantities correspond to two assumptions with respect to the

luster centers. One is that the cluster centers are surrounded by

eighbors with a lower local density. The other is that they have

elatively larger distance to the points of higher density. In the fol-

owing, we will describe the computation of ρ i and δi in much

ore detail. 

DPC represents data objects as points in a space and adopts a

istance metric, such as ( 1 ), as a similarity between objects. 

The local density of a point x i , denoted by ρ i , is defined as 

i = 

∑ 

j 

exp 

( 

−
dist 

(
x i , x j 

)2 

d c 
2 

) 

, (3) 

here d c is an adjustable parameter, controlling the weight degra-

ation rate. 

d c is the only variable in ( 3 ). The choice of d c is actually the

hoice of the average number of neighbors of all points in data set.

et v = n d × ( p/ 100 ) , where n d = ( n 
2 
) and p is a percentage. And n

enotes the number of points in data set. 

In the code presented by Rodriguez and Laio, d c is define as 

 c = d � τ� , (4) 

here d � τ� ∈ D = [ d 1 , d 1 , · · · d n d ] . D is a set of all the distances be-

ween every two points in data set, which are sorted in ascending

rder. � τ� is the subscript of d � τ� , where � · � is the ceiling func-

ion. 

The computation of δi is quite simple. The minimum distance

etween the point of x i and any other points with higher density,

enoted by δi , 

i = 

⎧ ⎨ 

⎩ 

min 

j: ρi < ρ j 

(
dist 

(
x i , x j 

))
, i f ∃ j s.t. ρi < ρ j 

max 
j 

(
dist 

(
x i , x j 

))
, otherwise 

(5) 

When the local density and delta values for each point have

een calculated, this method identifies the cluster centers by

earching anomalously large parameters ρ i and δi . On the basis of

his idea, cluster centers always appear on the upper-right corner

f the decision graph. 

After cluster centers have been found, DPC assigns each remain-

ng points to the same cluster as its nearest neighbors with higher

ensity. A representation named as decision graph is introduced to

elp one to make a decision. This representation is the plot of δi 

s a function of ρ for each point. 
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3. The proposed algorithm 

We present a new similarity measure as a framework for han-

dling mixed data with numerical and categorical attributes. To

avoid generating an iterative process, we introduce the similar-

ity metric to the density peaks clustering algorithm for clustering

data. 

3.1. Similarity measure 

3.1.1. Similarity measure for numerical values 

x (r) 
i 

and x (r) 
j 

are two objects with m r numerical attributes. The

similarity metric on numerical values can be calculated according

to the Euclidean distance, i.e., formula ( 1 ). For ease of computing

the similarity for mixed data, a generalization function, a mono-

tonically decreasing function, is used to convert the distance dist

into the judged similarity S r [27,28] . In order to satisfy the con-

dition: dist( x (r) 
i 

, x (r) 
j 

) ∈ � → S r ( x 
(r) 
i 

, x (r) 
j 

) ∈ [ 0 , 1 ] , we use a general-

ization function. Shepard [29] proposes a universal law of general-

ization for psychological science. It is applied to spatial generaliza-

tion. Shepard’s formulation is rather common. And it is given by

an exponential function: 

S r 
(
x 

( r ) 
i 

, x 

( r ) 
j 

)
= exp 

(
−dist 

(
x 

( r ) 
i 

, x 

( r ) 
j 

)2 
/ 2 

)
. (6)

The closer the value of S r is to 1, the more similar the two ob-

jects are. 

3.1.2. Similarity measure for categorical values 

We define the similarity index between two objects x (o) 
i 

and

x (o) 
j 

in terms of the categorical attribute F (o) 
k 

as 

σ
(
x ( 

o ) 
i,k 

, x ( 
o ) 

j,k 

)
= 

{
1 , i f x ( 

o ) 
i,k 

= x ( 
o ) 

j,k 

0 , i f x ( 
o ) 

i,k 

 = x ( 

o ) 
j,k 

. (7)

We hope that the similarity for categorical part will range from

0 to 1. Again, we take account of the significance of each categori-

cal attribute F (o) 
k 

. We have 

S o 
(
x 

( o ) 
i 

, x 

( o ) 
j 

)
= 

m o ∑ 

k =1 

w k σ
(
x ( 

o ) 
i,k 

, x ( 
o ) 

j,k 

)
, (8)

where 0 ≤ w k ≤ 1 and 

∑ m o 

k =1 
w k = 1 . Obviously, w k is the weight

of categorical attribute F (o) 
k 

. In other words, w k is the importance

of categorical attribute F (o) 
k 

contributing to the calculation of the

similarity on the categorical attributes. 

Now we discuss how to calculate the weight w k of each cate-

gorical attribute F (o) 
k 

. We apply the notion of entropy to the cal-

culation of the weights. We know that the inhomogeneity of the

data set with respect to a categorical attribute corresponds to the

importance of this categorical attribute from information theory.

On the basis of Measure III in the paper [30] , if the information

content of an attribute is high, the inhomogeneity of the data set

also is high for the attribute. The inhomogeneity of an attribute

may be represented by the entropy of this attribute. As a result, for

an attribute, more information content means more significance.

In part, the entropy of each attribute reflects the weight w k of the

corresponding attribute. Therefore, according to ( 2 ), we can calcu-

late the entropy of a categorical attribute F (o) 
k 

with DOM ( F (o) 
k 

) =
{ f k, 1 , f k, 2 , · · · , f k, t k 

} by 

H 

F ( 
o ) 

k 

= −
∑ 

f k,l ∈ DOM 

(
F ( 

o ) 
k 

) p 
(

f k,l 

)
log 

(
p 
(

f k,l 

))
. (9)

where the probability p ( f k, l ) of attribute value f k, l can be calcu-

lated by 
∑ n 

i =1 σ ( x (o) 
i,k 

, f k,l ) /n . Obviously, the numerator denotes the
umber of objects whose value of the categorical attribute F (o) 
k 

quals to f k, l . And, n is the total number of objects in the data

et. Observing formula ( 9 ) carefully, we notice the fact that if the

umber of values chosen by F (o) 
k 

, t k , is very large, then the entropy

f this categorical attribute, H 

F 
(o) 

k 

, is also high. This is not the same

s the actual case. In order to lower the impact of the categorical

ttributes with too many different values or even unique values,

uch as the ID number, we redefine the entropy of a categorical

ttribute F (o) 
k 

as 

 

′ 
F ( 

o ) 
k 

= − 1 

t k 

t k ∑ 

l=1 

p 
(

f k,l 

)
log 

(
p 
(

f k,l 

))
. (10)

Hence, we can quantify the importance of a categorical at-

ribute F (o) 
k 

as 

 k = 

H 

′ 
F ( 

o ) 
k ∑ m o 

k =1 
H 

′ 
F ( 

o ) 
k 

. (11)

Substituting ( 11 ) into formula ( 8 ), we obtain the final similarity

easure on the categorical attributes as follows: 

 o 

(
x 

( o ) 
i 

, x 

( o ) 
j 

)
= 

m o ∑ 

k =1 

( 

H 

′ 
F ( 

o ) 
k ∑ m o 

k =1 
H 

′ 
F ( 

o ) 
k 

· σ
(
x ( 

o ) 
i,k 

, x ( 
o ) 

j,k 

)) 

. (12)

Notice that, similar to S r ( x 
(r) 
i 

, x (r) 
j 

) , the value of S o ( x 
(o) 
i 

, x (o) 
j 

)

lso falls into the interval [0, 1]. 

.1.3. Similarity measure for mixed values 

From the above content, it is easy to discover that we treat the

imilarity on the numerical part as whole, but calculate the sim-

larity on the categorical part individually. Hence, this similarity

etween two mixed-type objects x i and x j , denoted as S( x i , x j ), is

efined by 

 

(
x i , x j 

)
= 

m r 

m 

exp 

(
−dist 

(
x 

( r ) 
i 

, x 

( r ) 
j 

)2 
/ 2 

)

+ 

m o 

m 

m o ∑ 

k =1 

( 

H 

′ 
F ( 

o ) 
k ∑ m o 

k =1 
H 

′ 
F ( 

o ) 
k 

· σ
(
x ( 

o ) 
i,k 

, x ( 
o ) 

j,k 

)) 

, (13)

here m r + m o = m and the first term is the weighted similarity

easure on the numerical attributes and the second term is the

eighted similarity measure on the categorical attributes. Because

he ranges of these two similarities S r ( x 
(r) 
i 

, x (r) 
j 

) and S o ( x 
(o) 
i 

, x (o) 
j 

)

re the interval from 0 to 1, the value of S( x i , x j ) using the above

eighting scheme also falls into the interval [0, 1]. 

To satisfy the requirement of the computation of the DPC algo-

ithm, we convert the judged similarity S ( ·, ·) back into the dis-

ance dist u ( ·, ·). The smaller the distance is, the more similar the

wo objects are. Hence, the distance measure finally can be defined

s 

is t u 
(
x i , x j 

)
= −log 

(
S 
(
x i , x j 

))
. (14)

.2. The description of the algorithm 

In this sub-section, we introduce the similarity metric pre-

ented in Section 3.1 to the DPC algorithm for handling mixed data.

e can calculate the distance matrix for mixed data by the pro-

osed similarity measure. 

The following algorithm is a summary of the proposed DPC-MD.

.3. Performance analysis 

This sub-section analyzes the time complexity of the DPC-MD

lgorithm. Our proposed algorithm is the same as the DPC algo-



M. Du et al. / Pattern Recognition Letters 97 (2017) 46–53 49 

Algorithm 1 DPC-MD algorithm. 

Inputs: 

The samples X ∈ � n × m 

The parameter d c 
Outputs: 

The label vector of cluster index: Y ∈ � n × 1 

Step 1 . Calculate distance matrix according to ( 14 ) 

Step 2 . Calculate ρ i for point x i according to ( 3 ) 

Step 3 . Calculate δi for point x i according to ( 5 ) 

Step 4 . Plot decision graph and select cluster centers 

Step 5 . Assign each remaining point to the cluster, which has its nearest neighbor of higher local density 

Step 6. Return y 

r  

s  

b  

t  

e  

p  

m  

t  

s  

O

4

 

t  

d  

s  

i  

U  

p  
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r  

a  

p  

o  

c  

c  
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I  

D  
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Table 1 

The details of the mixed data sets. 

Data Sets Cluster Dimension ( m r + m o ) Number 

Credit Approval 2 6 + 9 653 

Heart Disease 2 6 + 7 303 

Australian Credit Approval 2 6 + 8 690 

Lymphography 4 3 + 15 148 

KDD Cup 1999 4 26 + 15 20 0 0 

Table 2 

The details of the categorical data sets. 

Data Sets Cluster Dimension Number 

Soybean 4 35 47 

Congressional Voting 2 16 232 

LED Display Domain 10 7 500 

Table 3 

Clustering accuracy of the evaluated algorithms on Credit Ap- 

proval data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 0 .8407 d c = 6% 

K-Prototypes 0 .7796 ± 0.0390 γ = 0 . 7 , k = 2 

EKP 0 .5513 ± 0 γ = 1 . 3 , k = 2 

SBAC 0 .7525 k = 2 

4
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p
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c  

a  

A  
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D  

S

ithm and the only difference is the similarity measure. To be con-

istent with the above notations, we assume that n is the num-

er of objects in the data set; m r is the number of numerical at-

ributes; m o is the number of categorical attributes; t is the av-

rage number of different categorical attribute values. The com-

utation cost of Step 1 is O ( ( m r n ) 
2 + ( t m o n ) 

2 ) . The direct imple-

entation of Step 2 takes O ( n 2 ) time complexity. The implemen-

ation of the sorting process is O ( n log n ). As the complexity in as-

ignment procedure is O ( n ), the total time cost of this algorithm is

 ( ( m r n ) 2 + ( t m o n ) 2 ) + O ( n 2 ) + O ( n log n ) ∼ O (( t 2 m 

2 
o + m 

2 
r ) n 

2 ) . 

. Experiments and results 

In this section, we use experimental results to exhibit the clus-

ering performance and the robustness of our algorithm. In or-

er to show the clustering performance of DPC-MD, we use it in

ome benchmark data sets with various mixed-type and categor-

cal data sets. Almost all of the data sets are obtained from the

CI repository. On the categorical data sets, we compare the pro-

osed algorithm with K-Modes [34] , Evolutionary K-Prototypes al-

orithm (EKP) [12] and (Similarity-Based Agglomerative Clustering)

BAC [9] in accuracy. On the mixed-type data sets, we compare the

roposed algorithm with K-Prototypes [11] , EKP and SBAC in accu-

acy. Since the authors do not provide the implementation of this

lgorithm, we reimplement SBAC algorithm according to the pa-

er [9] . It should be noted that we will treat the actual number

f classes as prior information to facilitate the evaluation of the

lustering results of this method. In other words, the number of

lusters is given as the actual number of classes instead of the se-

ection scheme used in the original paper. 

We conduct experiments in a work station with a core i7 DMI2-

ntel 3.6 GHz processor and 18GB RAM running MATLAB 2012B. In

PC and DPC-MD, we select the parameter d c from [0.1% 0.2% 0.5%

% 2% 4% 6%]. The parameter γ of the K-Prototypes and EKP varies

rom 0.1 to 2.1 in 0.1 increments. Due to using the random initial-

zation, K-Prototypes, K-Modes and EKP are repeated 10 times. 

.1. Evaluation method 

This paper uses clustering accuracy (ACC) [31–33] to measure

he quality of clustering results. For n distinct samples x i ∈ � 

m ,

 i and c i are the inherent category label and the predicted cluster

abel of x i , the calculation formula of ACC is 

CC = 

n ∑ 

i =1 

σ ( y i , map ( c i ) ) /n, (16) 

here map ( · ) maps each cluster label to a category label by the

ungarian algorithm and this mapping is optimal. Like formula ( 7 ),

(y i , map (c i )) equal to 1 if y i = map( c i ) or 0 otherwise. In addition,

 is the number of objects in the data set. The higher the ACC

alue is, the better the clustering performs. 
.2. Experiments 

The mixed-type data sets used in the experiment are all taken

rom the UCI Machine Learning Repository, including Credit Ap-

roval, Heart Disease, Australian Credit Approval and Lymphogra-

hy. The details of these data sets are listed in Table 1 . 

The Categorical datasets used in the experiment are also taken

rom the UCI Machine Learning Repository, including Soybean,

ongressional Voting Records and LED Display Domain. The details

f these data sets are listed in Table 2 . 

.2.1. Experiments on mixed datasets 

There are a few missing values in the Credit Approval data set.

 complete version of this data set has 690 objects. To facilitate

andling this data set, we use a cleaned version (where objects

ith missing values are not included) with 653 objects. Thus, the

redit Approval data set consists of 653 samples with six numeri-

al and nine categorical attributes. The data objects can be divided

nto two classes. In Table 3 , we list the clustering accuracy of our

roposed algorithm, K-Prototypes, EKP and SBAC on this set. In this

ase, the clustering accuracy values of K-Prototypes, EKP and SBAC

re 0.7796, 0.5513, 0.7525, respectively, as shown in Table 3 . The

CC value of our algorithm is 0.8407 at d c = 6% . Experimental re-

ults on the Credit Approval data set show that the ACC value of

PC-MD is 6.11%, 28.94%, 8.82% higher than K-Prototypes, EKP and

BAC respectively. 
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Table 4 

Clustering accuracy of the evaluated algorithms on Heart Dis- 

ease data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 0 .8218 d c = 0 . 1% 

K-Prototypes 0 .7812 ± 0.0386 γ = 0 . 4 , k = 2 

EKP 0 .5743 ± 0.0104 γ = 0 . 2 , k = 2 

SBAC 0 .7525 k = 2 

Table 5 

Clustering accuracy of the evaluated algorithms on Australian 

Credit Approval data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 0 .8652 d c = 6% 

K-Prototypes 0 .7925 ± 0.0295 γ = 0 . 4 , k = 2 

EKP 0 .5590 ± 0.0014 γ = 1 . 1 , k = 2 

SBAC 0 .60 0 0 k = 2 

Table 6 

Clustering accuracy of the evaluated algorithms on the Lym- 

phography data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 0 .6149 d c = 0 . 1% 

K-Prototypes 0 .4818 ± 0.0588 γ = 1 . 5 , k = 4 

EKP 0 .5797 ± 0.0634 γ = 0 . 2 , k = 4 

SBAC 0 .5676 k = 4 

Table 7 

Clustering accuracy of the evaluated algorithms on the KDD Cup 

1999 data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 1 .0 d c = 6% 

K-Prototypes 0 .7500 ± 0 γ = 1 . 5 , k = 4 

EKP 0 .4805 ± 0.0789 γ = 2 , k = 4 

SBAC – –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Clustering accuracy of the evaluated algorithms on the 

Soybean data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 1 .0 d c = 6% 

K-Modes 0 .7787 ± 0.1683 k = 4 

EKP 0 .9596 ± 0.0067 k = 4 

SBAC 0 .2979 k = 4 

Table 9 

Clustering accuracy of the evaluated algorithms on the 

Congressional Voting Records data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 0 .9138 d c = 1% 

K-Modes 0 .8694 ± 0.0054 k = 2 

EKP 0 .8664 ± 0 k = 2 

SBAC 0 .5388 k = 2 

Table 10 

Clustering accuracy of the evaluated algorithms on the 

LED Display Domain data set. 

Algorithm Clustering accuracy (ACC) Parameter 

DPC-MD 0 .6860 d c = 0 . 1% 

K-Modes 0 .5310 ± 0.0568 k = 10 

EKP 0 .6312 ± 0.0482 k = 10 

SBAC 0 .3380 k = 10 
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The Heart Disease data set consists of 303 samples with six nu-

merical and seven categorical attributes. The data objects can be

divided into two classes. Table 4 shows that the ACC value of DPC-

MD is 4.06%, 24.75%, 6.93% higher than K-Prototypes, EKP and SBAC

respectively. Note that EKP produces the stable results on the data

set. The results verifies EKP’s advantage that it is not sensitive to

initialization. 

The Australian Credit Approval data set consists of 690 samples

with six numerical and eight categorical attributes. The data ob-

jects can be divided into two classes. Table 5 shows that the ACC

value of DPC-MD is 7.27%, 30.62%, 26.52% higher than K-Prototypes,

EKP and SBAC respectively. 

The Lymphography data set consists of 148 samples with three

numerical and fifteen categorical attributes. The data objects can

be divided into four classes. Table 6 shows that the ACC value of

DPC-MD is 13.31%, 3.52%, 4.73% higher than K-Prototypes, EKP and

SBAC respectively. 

A complete version of the KDD Cup 1999 data set has 4,0 0 0,0 0 0

objects. Our device cannot process such a large data set due to

the limitations of the memory. Since we use a subset of the KDD

Cup 1999 data set has 20 0 0 objects, equally distributed into four

classes. And each object still has 26 numerical and 15 categorical

attributes Table 7 shows that the ACC value of DPC-MD is 25%,

51.92% higher than K-Prototypes and EKP respectively. The symbol

- means that we do not get the result due to both high computa-

tional complexity of SBAC and the limitations of our device. Note

that SBAC spends a lot of time finding the uncommon feature, es-

pecially when dealing with large data sets with high-dimensional

numerical attributes. 
As can be seen from Tables 3 to 7 , experimental results of DPC-

D are significantly better than those obtained by other methods

or these data sets. 

.2.2. Experiments on categorical datasets 

The Soybean data set consists of 47 samples with 35 categor-

cal attributes. The data objects can be divided into four classes.

able 8 shows that the ACC value of DPC-MD is 22.13%, 4.04%,

0.21% higher than K-Modes, EKP and SBAC respectively. 

Similar to the Credit Approval data set, there are a few miss-

ng values in the Congressional Voting Records data set. A com-

lete version of this data set has 435 objects. In contrast, we use

 cleaned version consisting of 232 objects. The Congressional Vot-

ng Records data set consists of 232 samples with 16 categorical

ttributes. The data objects can be divided into two classes. Table 9

hows that the ACC value of DPC-MD is 4.44%, 4.74%, 37.50% higher

han K-Modes, EKP and SBAC respectively. 

The LED Display Domain data set is a sample of 500 objects ob-

ained from the original data generator. Thus, the LED Display Do-

ain data set consists of 500 samples with 7 categorical attributes.

he data objects can be divided into ten classes. Table 10 shows

hat the ACC value of DPC-MD is 15.50%, 5.48%, 34.80% higher than

-Modes, EKP and SBAC respectively. 

As can be seen from Tables 8 to 10 , K-Modes and EKP are

onducted repeatedly, because DPC-MD and SBAC without initial-

zation come out stable clustering results when the parameter is

iven. Obviously, the clustering results obtained by our algorithm

re, in most of the cases, superior to the one obtained by the other

ethods. 

In conclusion, on these categorical and mixed-type data sets,

he ACC values obtained by DPC-MD are superior to those obtained

y other methods. The main reason for this is that K-Modes, K-

rototypes and EKP are sensitive to initialization and are unsuit-

ble for non-spherical distribution data. SBAC proposes the simi-

arity measure based on the assumption that the more uncommon

atched feature value corresponds to greater weight. We conjec-

ure that this assumption is not appropriate for these data sets.

ue to these factors, these comparison partners do not have ex-
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Fig. 1. Clustering accuracy of DPC and our algorithm on the Soybean data set. 
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Fig. 3. Clustering accuracy of DPC and our algorithm on the Heart Disease data set. 
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ellent jobs. The proposed method overcomes above problems ef-

ectively. Thus it obtains good clustering results on these data sets.

ven, DPC-MD finds the optimal structure of clusters in clustering

he Soybean data set. 

.3. Robustness tests 

As is known to all, the density peaks clustering algorithm is

eveloped to cluster numerical data. In order to facilitate compar-

ng our method with DPC, we use a pre-processing method which

ake DPC work on mixed data sets. More specifically, we convert

ategorical values to integer values on categorical data sets and

ixed-type data sets. Thus we can directly adopt Euclidean dis-

ance to compute dissimilarity between transformed objects. 

Due to space constraints, only two of the data sets be explored

ere. Fig. 1 shows the clustering accuracy of DPC and DPC-MD on

he Soybean data set with varying parameter d c . In this figure,

e can see that DPC generates good results in most cases, even

he worst value is 0.9574. Nevertheless, DPC cannot work when d c 
quals to 0.1 (This reason is discussed in detail below). By contrast,

he clustering results of DPC-MD are stable no matter what value

he parameter d c is. 

In some cases, DPC does a poor job of finding the clusters,

hich we need to pay extra attention to. Fig. 2 (a) shows that the

ecision graph is produced by DPC on the Soybean data set, when

he parameter is 0.1%. Only three cluster centers can be found by

PC on decision graph. In this case, we are incapable of making
Fig. 2. The decision graphs
he right choices. It means that DPC generates wrong number of

lusters on this data set. In contrast, DPC-MD using the proposed

imilarity generates correct number of clusters, when the parame-

er is 0.1%. Fig. 2 (b) shows the corresponding decision graph. 

Fig. 3 shows the clustering accuracy DPC and DPC-MD on the

eart Disease data set with varying parameter d c . DPC cannot work

n this data set occasionally, too. In this figure, the curve of our

lgorithm is higher than the curve of DPC. 

These figures show that the curves of our algorithm is almost

at, or even completely flat. The above experiments demonstrate

hat the choice of the parameter d c has only a minor impact on the

lustering results of our algorithm. In other words, the proposed

lgorithm has strong robustness. 

Beyond the decision graph, Rodriguez and Laio present a γ -

raph. It provides a hint for choosing the number of centers us-

ng the plot of γ = ρδ sorted in decreasing order. Fig. 4 displays

he γ -graph results of DPC and our algorithm for clustering the

eart Disease data set. Fig. 4 (a) and (c) show the γ -graph results

f DPC. It can be easily noticed that the blue dot (represents one of

wo centers) is far away from the “straight line” (represents other

oints), whereas it is hard to separate the yellow dot (represents

he other center) from other points. Consequently, on the Heart

isease set, when the parameter is 4% or 6%, DPC hardly finds cor-

ect number of clusters by using the γ -graph. As shown in Fig. 4 (b)

nd (d), the γ -graph results of our algorithm show that the global
 on the Soybean set. 
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Fig. 4. The γ -graphs of DPC and DPC-MD on the Heart data set. 
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distribution of the points is a “straight line”, but the centers of the

two clusters are the outliers deviating from the global distribution.

The combination of our proposed algorithm and the γ -graph

displays a possible that the proposed algorithm can automatically

determine the cluster centers. However, this is not the research fo-

cus of this article. Hence, we will not further discuss this in this

article. 

Experimental results prove that DPC-MD obtains more robust

performance than the original algorithm. The reason for this is that

the pre-processing destructs the original structure of categorical

attributes. The component of transformed categorical attributes is

also measured by Euclidean distance, so the dissimilarity metric

does not reveal the dissimilarity between categorical values. Espe-

cially, when data sets have categorical attributes with hundreds or

thousands of categories, compared with two distinct values may

yield a very large difference, while it can also yield a difference

of zero. By contrast, our proposed similarity metric can reveal the

structure of the clusters better. 

5. Conclusions 

We present a similarity metric for measuring numerical and

categorical values. Robustness tests prove that the proposed sim-

ilarity metric can better reveal the structure of the data sets than

pre-processing methods. The similarity metric used in K-Prototypes

and EKP needs to choose the parameter γ to avoid favoring either

type of attribute. However, it comes out that choosing the param-

eter is a delicate and difficult task for users. In contrast, our simi-

larity metric can circumvent parameter adjustment effectively. Al-

though the similarity metric used in SBAC also does not need to

adjust the parameter, a computational efficient similarity measure

remains to be developed. In addition, experiment results show the

assumption used in similarity computations does not apply to all

the data sets. To better detect non-spherical distribution, we inte-
rate the similarity metric with the density peaks clustering algo-

ithm without initialization. We further bring forward a new clus-

ering algorithm for handling mixed data, called DPC-MD. The ex-

erimental results support our claim that DPC-MD is an efficient

lgorithm for clustering mixed data. Besides, we improve the ro-

ustness of the original algorithm. This means that clustering re-

ults are less sensitive to the choice of the parameter d c . More

mportantly, we find it possible that the proposed algorithm can

utomatically determine the cluster centers based on the γ -graph.

Future works will develop an automatic cluster centroid selec-

ion method on the basis of the proposed algorithm. Despite the

roposed algorithm has great stability with different values of d c ,

his method also needs to determine the value of the parameter. In

uture works, we will focus on investigating this problem that we

an automatically determine the parameter d c . 
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