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The density peaks clustering (DPC) algorithm is well known for its power on non-spherical distribution
data sets. However, it works only on numerical values. This prohibits it from being used to cluster real
world data containing categorical values and numerical values. Traditional clustering algorithms for mixed
data use a pre-processing based on binary encoding. But such methods destruct the original structure
of categorical attributes. Other solutions based on simple matching, such as K-Prototypes, need a user-
defined parameter to avoid favoring either type of attribute. In order to overcome these problems, we
present a novel clustering algorithm for mixed data, called DPC-MD. We improve DPC by using a new
similarity criterion to deal with the three types of data: numerical, categorical, or mixed data. Compared
to other methods for mixed data, DPC absolutely has more advantages to deal with non-spherical distri-
bution data. In addition, the core of the proposed method is based on a new similarity measure for mixed
data. This similarity measure is proposed to avoid feature transformation and parameter adjustment. The
performance of our method is demonstrated by experiments on some real-world datasets in comparison
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with that of traditional clustering algorithms, such as K-Modes, K-Prototypes EKP and SBAC.
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1. Introduction

Clustering analysis has attracted a lot of research attention due
to its usefulness in many applications, including community detec-
tion, image processing, document processing, and so forth [1-7].
Clustering analysis has attracted a lot of research attention due to
its usefulness in many applications, including most clustering al-
gorithms rely on the assumption that data simply contain numer-
ical values, but what should be dealt with is categorical values or
mixed data containing both numerical and categorical values on
data sets in the real world. For clustering algorithms dealing with
mixed data, the core of these methods is how to measure the sim-
ilarity for categorical attributes. Roughly, the existing clustering al-
gorithms for mixed data can fall into two categories according to
dealing with categorical attribute values. The first category of the
methods is based on the pre-processing methods. The original at-
tributes are transformed to new forms. Then, traditional distance
functions are used to measure the transformed data in the new
relation. The second category of approaches is based on similarity
metrics dealing with categorical values directly.
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Traditional clustering algorithms for mixed data have a pre-
processing that is able to convert categorical attributes to new
forms and facilitates processing. Binary encoding is the most com-
mon pre-processing method. This method transforms each cate-
gorical attribute to a set of binary attributes. For example, Ralam-
bondrainy’s algorithm [8] transforms categorical attributes into a
set of binary attributes. Then, new forms are treated as numeric in
the K-Means algorithm. Hence, we can directly adopt most tradi-
tional distances which are often used in numerical clustering, such
as Euclidean distance, to define similarity between transformed ob-
jects. However, this method destructs the original structure of cate-
gorical attributes. In other words, transformed binary attributes are
meaningless and their values are hard to interpret [9]. Apart from
binary encoding, there are also other pre-processing methods. For
example, in order to handle categorical data, Hsu [10] presents a
new mechanism, distance hierarchy, which encodes a data set into
a weighted tree structure. But it has a serious drawback that both
the assignment of weights and the construction of distance hierar-
chies rely on domain knowledge.

In the respect of similarity metrics for categorical values, the
K-Prototypes algorithm [11] is one of the most famous cluster-
ing algorithms for mixed data. Nevertheless, the choice of the
weight y has a significant effect on clustering results. As a vari-
ation of K-Prototypes algorithm, evolutionary K-Prototypes algo-
rithm (EKP) [12], an unsupervised evolutionary clustering algo-
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rithm for mixed type data, which integrates evolutionary compu-
tation framework with KP, also has a weight y. Also, these algo-
rithms [13,14] take into account the significance of different at-
tributes towards the clustering process. However, a new param-
eter, the degree of fuzziness «, is introduced into these cluster-
ing algorithms. Hence, it will come out that choosing the param-
eter is a delicate and difficult task for users that may be a road-
block for using K-Prototypes and its variations efficiently. In addi-
tion, some algorithms [15,16] use entropy-type measures to group
objects. However, these methods only deal with categorical data
instead of mixed data and these entropy-type criteria can only
measure the similarity between an object and a cluster. Besides,
OCIL [17] gives a unified similarity metric which can be applied to
mixed data using the entropy-based criterion. This similarity met-
ric is also based on the concept of object-cluster similarity. In other
words, it only can measure the similarity between an object and a
cluster. In addition, OCIL is an iterative clustering algorithm. This
means that this method requires a random initialization and may
trap into local optimum. Similar to OCIL, Lim, et al. [18] propose
a clustering framework for mixed attribute type dataset based on
the entropy concept. It also needs to adjust the parameter which
is used to balance attribute type between categorical attribute and
numerical one. Besides, Li and Biswas [9] propose a Similarity-
Based Agglomerative Clustering (SBAC) algorithm based on a new
similarity metric that deals with the mixed data. But this method
is high computational complexity and only suitable for some small
data sets.

From the above discussion, most of clustering algorithms use
the K-Means paradigm to cluster data having values. It means that
those methods have an iterative process and probably trap into lo-
cal optimum. A new algorithm, density peaks clustering (DPC) [19],
proposed by Rodriguez and Laio is published in the US journal Sci-
ence. This algorithm is able to detect non-spherical clusters with-
out specifying the number of clusters. And more important, DPC
does not need to iterate. Some studies [20-24]| have been going
on around this method. However, there are still some shortcom-
ings. For example, DPC algorithm cannot find the correct number
of clusters automatically. In order to overcome this difficulty, Liang
and Chen [25] propose the 3DC clustering based on the divide-
and-conquer strategy and the density-reachable concept. Du et al.
[26] propose a density peaks clustering based on k nearest neigh-
bors (DPC-KNN) which introduces the idea of k nearest neighbors
(KNN) into DPC and has another option for the local density com-
putation.

This paper presents a novel clustering algorithm, DPC-MD,
based on a new similarity measure for mixed data. Actually, the
proposed algorithm is the generalization of the original DPC algo-
rithm. In order to assess the performance of the proposed algo-
rithm, we compare the proposed algorithm with other algorithms
on some UCI data sets. As a result, our algorithms have achieved
satisfactory results in most data sets.

2. Related works

2.1. Notations

Let X = {Xq,Xy,---,Xn} denote a dataset of n mixed data ob-
jects, where for each i, 1 < i < n, x; with m features consists of
m; numerical features and m, categorical features. Therefore, for
eachi, 1 <i<n,and for k, 1 < k < my, let xﬁ) be the kth fea-
(r
1
i, and for k, 1 < k < m,, xf? denotes the kth feature of xi(”),
(o
1
ture Fk(r) is represented by continuous values. And categorical fea-
ture Fk(") has t, categories, i.e., DOM(FR(‘”) ={fe1 fea o frg

ture of xi(r), where x” is the numerical part. Similarly, for each

where x is the categorical part. The domain of numerical fea-

where DOM(Fk(")) contains all possible values that can be chosen

by attribute F*. Therefore, x; can be represented as [x”,x(”] =
) (1) (r) (0) (0)
(X7 X2 s Ximes X1 > Ximl-
Distance functions such as Euclidean distance are used as sim-
ilarity measure for numerical attribute. The Euclidean distance

dist(x;, X;) between the object x; and the object x; is defined as:

diSt(X,’, Xj) = ||X,‘ —Xj ||2 (1)

The definition of the information entropy H(x) is given, as fol-
low:

HEx) ==Y peolog(p(x)). 2)

where p(x) is the probability mass function of the random variable
x. V is the finite set of possible outcomes of x.

2.2. Density peaks clustering

Its idea is that cluster centers are characterized by a higher
density than their neighbors and by a relatively large distance
from points with higher densities. This method utilizes two im-
portant quantities: One is the local density p; of each point Xx;,
and the other is its distance §; from points of higher density. The
two quantities correspond to two assumptions with respect to the
cluster centers. One is that the cluster centers are surrounded by
neighbors with a lower local density. The other is that they have
relatively larger distance to the points of higher density. In the fol-
lowing, we will describe the computation of p; and §; in much
more detail.

DPC represents data objects as points in a space and adopts a
distance metric, such as (1), as a similarity between objects.

The local density of a point x;, denoted by p;, is defined as

dist(x;, X; 2
pi= Y exp —# : (3)
J dc

where d. is an adjustable parameter, controlling the weight degra-
dation rate.

dc is the only variable in (3). The choice of d. is actually the
choice of the average number of neighbors of all points in data set.
Let v=ny x (p/100), where ny = (}) and p is a percentage. And n
denotes the number of points in data set.

In the code presented by Rodriguez and Laio, d. is define as

dc = d(r] B (4)

where dr;7 € D=[dy,dy,---dn,]. D is a set of all the distances be-
tween every two points in data set, which are sorted in ascending
order. [t is the subscript of d;,1, where [ - 7 is the ceiling func-
tion.

The computation of §; is quite simple. The minimum distance
between the point of x; and any other points with higher density,
denoted by §;,

j;}}ir}) (dist(x;, x;)).if 3js.t.pi < p;
(= {eee . 5)
m]ax (dlst(x,, xj)), otherwise

When the local density and delta values for each point have
been calculated, this method identifies the cluster centers by
searching anomalously large parameters p; and §;. On the basis of
this idea, cluster centers always appear on the upper-right corner
of the decision graph.

After cluster centers have been found, DPC assigns each remain-
ing points to the same cluster as its nearest neighbors with higher
density. A representation named as decision graph is introduced to
help one to make a decision. This representation is the plot of §;
as a function of p; for each point.
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3. The proposed algorithm

We present a new similarity measure as a framework for han-
dling mixed data with numerical and categorical attributes. To
avoid generating an iterative process, we introduce the similar-
ity metric to the density peaks clustering algorithm for clustering
data.

3.1. Similarity measure

3.1.1. Similarity measure for numerical values

xfr) and x;r) are two objects with m, numerical attributes. The
similarity metric on numerical values can be calculated according
to the Euclidean distance, i.e., formula (1). For ease of computing
the similarity for mixed data, a generalization function, a mono-
tonically decreasing function, is used to convert the distance dist
into the judged similarity S; [27,28]. In order to satisfy the con-
dition: dist(xl.(”, x;r)) en — Sr(xl.(r),xj.r)) € [0, 1], we use a general-
ization function. Shepard [29] proposes a universal law of general-
ization for psychological science. It is applied to spatial generaliza-
tion. Shepard’s formulation is rather common. And it is given by
an exponential function:

S (%", x") =exp< dist(x{"”, x") /2) (6)

The closer the value of S, is to 1, the more similar the two ob-
jects are.

3.1.2. Similarity measure for categorical values
We define the similarity index between two objects x ) and

x§°) in terms of the categorical attribute Fk(") as

1if XQ = X9
(0) ,(0) ik
o (XyXj%) = {0 if x© 2 (o)~ (7)

ik

We hope that the 51m11ar1ty for categorical part will range from
0 to 1. Again, we take account of the significance of each categori-
cal attribute F, © We have

ZW o (x5 X7%). (8)

where 0 < wy, < 1 and Zk=01 wy, = 1. Obviously, w; is the weight

So (xl.(") , x}o))

of categorical attribute Fk(o). In other words, wy, is the importance

of categorical attribute Fk(") contributing to the calculation of the

similarity on the categorical attributes.

Now we discuss how to calculate the weight w, of each cate-
gorical attribute Fk("). We apply the notion of entropy to the cal-
culation of the weights. We know that the inhomogeneity of the
data set with respect to a categorical attribute corresponds to the
importance of this categorical attribute from information theory.
On the basis of Measure III in the paper [30], if the information
content of an attribute is high, the inhomogeneity of the data set
also is high for the attribute. The inhomogeneity of an attribute
may be represented by the entropy of this attribute. As a result, for
an attribute, more information content means more significance.
In part, the entropy of each attribute reflects the weight w; of the
corresponding attribute. Therefore, according to (2), we can calcu-
late the entropy of a categorical attribute Fk(") with DOM(Fk(")) =

{firs fia ’fk,tk} by
HFk(") == Z p(ﬁ(.l)lOg(p(fk,l))~ (9)

fi.;eDOM (F,j”’)

where the probability p(fy ;) of attribute value f; ; can be calcu-
lated by Y"1 ]a(x(o) fr.)/n. Obviously, the numerator denotes the

number of objects whose value of the categorical attribute Fk(")
equals to fi ;. And, n is the total number of objects in the data
set. Observing formula (9) carefully, we notice the fact that if the
number of values chosen by Fk0 ty, is very large, then the entropy
of this categorical attribute, H Fo is also high. This is not the same
as the actual case. In order to lower the impact of the categorical
attributes with too many different values or even unique values,

such as the ID number, we redefine the entropy of a categorical
attribute F, © s

|3

F(o) = Zp(fk )log(p(fi1))- (10)

Hence, we can quantify the importance of a categorical at-
tribute Fk(o) as

H/F(o)
Wy = (11 )
Z F<u>
Substituting (11) into formula (8), we obtain the final similarity
measure on the categorical attributes as follows:

H/

my
s =3 (e
K=

k=1

O
) ,,(0)

o a(xi,lc’xj,lc) : (12)

FU

Notice that, similar to Sr(xlf”,x}r)), the value of So(xf"),x;.o))
also falls into the interval [0, 1].

3.1.3. Similarity measure for mixed values

From the above content, it is easy to discover that we treat the
similarity on the numerical part as whole, but calculate the sim-
ilarity on the categorical part individually. Hence, this similarity
between two mixed-type objects x; and x;, denoted as S(x;, X;), is
defined by

S(xi.x;) = %exp(—dist(x}r),xj.r))z/z)
H/ (0)
o Z s o (xx9) ). (13)

k=1 k=171 F©

where m, + my =m and the first term is the weighted similarity
measure on the numerical attributes and the second term is the
weighted similarity measure on the categorical attributes. Because
the ranges of these two similarities Sr(xi(r) ,x;r)) and So(xl.("),x;."))
are the interval from 0 to 1, the value of S(x;, X;) using the above
weighting scheme also falls into the interval [0, 1].

To satisfy the requirement of the computation of the DPC algo-
rithm, we convert the judged similarity S( -, -) back into the dis-
tance disty( -, -). The smaller the distance is, the more similar the
two objects are. Hence, the distance measure finally can be defined
as

dist, (x;, ;) = —log(S(x;. X;))- (14)
3.2. The description of the algorithm

In this sub-section, we introduce the similarity metric pre-
sented in Section 3.1 to the DPC algorithm for handling mixed data.
We can calculate the distance matrix for mixed data by the pro-
posed similarity measure.

The following algorithm is a summary of the proposed DPC-MD.

3.3. Performance analysis

This sub-section analyzes the time complexity of the DPC-MD
algorithm. Our proposed algorithm is the same as the DPC algo-
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Algorithm 1 DPC-MD algorithm.

Inputs:

The samples X € Ry« m

The parameter d.

Outputs:

The label vector of cluster index: Y € 9%, , 4

Step 1. Calculate distance matrix according to (14)

Step 2. Calculate p; for point x; according to (3)
Step 3. Calculate §; for point x; according to (5)

Step 4. Plot decision graph and select cluster centers

Step 5. Assign each remaining point to the cluster, which has its nearest neighbor of higher local density

Step 6. Return y

rithm and the only difference is the similarity measure. To be con-
sistent with the above notations, we assume that n is the num-
ber of objects in the data set; m;, is the number of numerical at-
tributes; m, is the number of categorical attributes; t is the av-
erage number of different categorical attribute values. The com-
putation cost of Step 1 is O((mrn)2 + (tmon)z). The direct imple-
mentation of Step 2 takes O(n2) time complexity. The implemen-
tation of the sorting process is O(nlogn). As the complexity in as-
signment procedure is O(n), the total time cost of this algorithm is
0((mn)? + (tmon)?) +0(n?) +0(nlogn) ~ O((t?m2 + m2)n?).

4. Experiments and results

In this section, we use experimental results to exhibit the clus-
tering performance and the robustness of our algorithm. In or-
der to show the clustering performance of DPC-MD, we use it in
some benchmark data sets with various mixed-type and categor-
ical data sets. Almost all of the data sets are obtained from the
UCI repository. On the categorical data sets, we compare the pro-
posed algorithm with K-Modes [34], Evolutionary K-Prototypes al-
gorithm (EKP) [12] and (Similarity-Based Agglomerative Clustering)
SBAC [9] in accuracy. On the mixed-type data sets, we compare the
proposed algorithm with K-Prototypes [11], EKP and SBAC in accu-
racy. Since the authors do not provide the implementation of this
algorithm, we reimplement SBAC algorithm according to the pa-
per [9]. It should be noted that we will treat the actual number
of classes as prior information to facilitate the evaluation of the
clustering results of this method. In other words, the number of
clusters is given as the actual number of classes instead of the se-
lection scheme used in the original paper.

We conduct experiments in a work station with a core i7 DMI2-
Intel 3.6 GHz processor and 18GB RAM running MATLAB 2012B. In
DPC and DPC-MD, we select the parameter d. from [0.1% 0.2% 0.5%
1% 2% 4% 6%]. The parameter y of the K-Prototypes and EKP varies
from 0.1 to 2.1 in 0.1 increments. Due to using the random initial-
ization, K-Prototypes, K-Modes and EKP are repeated 10 times.

4.1. Evaluation method

This paper uses clustering accuracy (ACC) [31-33] to measure
the quality of clustering results. For n distinct samples x; € %™,
y; and ¢; are the inherent category label and the predicted cluster
label of x;, the calculation formula of ACC is

ACC =" o (i, map(c;))/n, (16)
i=1

where map( - ) maps each cluster label to a category label by the
Hungarian algorithm and this mapping is optimal. Like formula (7),
8(y;, map(c;)) equal to 1 if y; = map(c;) or O otherwise. In addition,
N is the number of objects in the data set. The higher the ACC
value is, the better the clustering performs.

Table 1
The details of the mixed data sets.
Data Sets Cluster ~ Dimension (m, +m,)  Number
Credit Approval 2 6+9 653
Heart Disease 2 6+7 303
Australian Credit Approval 2 6+38 690
Lymphography 4 3+15 148
KDD Cup 1999 4 26+15 2000
Table 2
The details of the categorical data sets.
Data Sets Cluster ~ Dimension  Number
Soybean 4 35 47
Congressional Voting 2 16 232
LED Display Domain 10 7 500
Table 3

Clustering accuracy of the evaluated algorithms on Credit Ap-
proval data set.

Algorithm Clustering accuracy (ACC) Parameter
DPC-MD 0.8407 de. = 6%
K-Prototypes 0.7796 +0.0390 y=07k=2
EKP 0.5513+0 y=13k=2
SBAC 0.7525 k=2

4.2. Experiments

The mixed-type data sets used in the experiment are all taken
from the UCI Machine Learning Repository, including Credit Ap-
proval, Heart Disease, Australian Credit Approval and Lymphogra-
phy. The details of these data sets are listed in Table 1.

The Categorical datasets used in the experiment are also taken
from the UCI Machine Learning Repository, including Soybean,
Congressional Voting Records and LED Display Domain. The details
of these data sets are listed in Table 2.

4.2.1. Experiments on mixed datasets

There are a few missing values in the Credit Approval data set.
A complete version of this data set has 690 objects. To facilitate
handling this data set, we use a cleaned version (where objects
with missing values are not included) with 653 objects. Thus, the
Credit Approval data set consists of 653 samples with six numeri-
cal and nine categorical attributes. The data objects can be divided
into two classes. In Table 3, we list the clustering accuracy of our
proposed algorithm, K-Prototypes, EKP and SBAC on this set. In this
case, the clustering accuracy values of K-Prototypes, EKP and SBAC
are 0.7796, 0.5513, 0.7525, respectively, as shown in Table 3. The
ACC value of our algorithm is 0.8407 at d. = 6%. Experimental re-
sults on the Credit Approval data set show that the ACC value of
DPC-MD is 6.11%, 28.94%, 8.82% higher than K-Prototypes, EKP and
SBAC respectively.
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Table 4
Clustering accuracy of the evaluated algorithms on Heart Dis-
ease data set.

Algorithm Clustering accuracy (ACC)  Parameter
DPC-MD 0.8218 d.=0.1%
K-Prototypes ~ 0.7812+0.0386 y=04k=2
EKP 0.5743 +£0.0104 y=02,k=2
SBAC 0.7525 k=2

Table 5
Clustering accuracy of the evaluated algorithms on Australian
Credit Approval data set.

Algorithm Clustering accuracy (ACC)  Parameter
DPC-MD 0.8652 de = 6%
K-Prototypes 0.7925 +0.0295 y=04k=2
EKP 0.5590+0.0014 y=11k=2
SBAC 0.6000 k=2

Table 6
Clustering accuracy of the evaluated algorithms on the Lym-
phography data set.

Algorithm Clustering accuracy (ACC)  Parameter
DPC-MD 0.6149 d. =0.1%
K-Prototypes  0.4818 +0.0588 y=15k=4
EKP 0.5797 £0.0634 y=02,k=4
SBAC 0.5676 k=4

Table 7
Clustering accuracy of the evaluated algorithms on the KDD Cup
1999 data set.

Algorithm Clustering accuracy (ACC)  Parameter
DPC-MD 1.0 d. = 6%
K-Prototypes  0.7500+0 y=15k=4
EKP 0.4805+0.0789 y=2k=4
SBAC - -

The Heart Disease data set consists of 303 samples with six nu-
merical and seven categorical attributes. The data objects can be
divided into two classes. Table 4 shows that the ACC value of DPC-
MD is 4.06%, 24.75%, 6.93% higher than K-Prototypes, EKP and SBAC
respectively. Note that EKP produces the stable results on the data
set. The results verifies EKP’s advantage that it is not sensitive to
initialization.

The Australian Credit Approval data set consists of 690 samples
with six numerical and eight categorical attributes. The data ob-
jects can be divided into two classes. Table 5 shows that the ACC
value of DPC-MD is 7.27%, 30.62%, 26.52% higher than K-Prototypes,
EKP and SBAC respectively.

The Lymphography data set consists of 148 samples with three
numerical and fifteen categorical attributes. The data objects can
be divided into four classes. Table 6 shows that the ACC value of
DPC-MD is 13.31%, 3.52%, 4.73% higher than K-Prototypes, EKP and
SBAC respectively.

A complete version of the KDD Cup 1999 data set has 4,000,000
objects. Our device cannot process such a large data set due to
the limitations of the memory. Since we use a subset of the KDD
Cup 1999 data set has 2000 objects, equally distributed into four
classes. And each object still has 26 numerical and 15 categorical
attributes Table 7 shows that the ACC value of DPC-MD is 25%,
51.92% higher than K-Prototypes and EKP respectively. The symbol
- means that we do not get the result due to both high computa-
tional complexity of SBAC and the limitations of our device. Note
that SBAC spends a lot of time finding the uncommon feature, es-
pecially when dealing with large data sets with high-dimensional
numerical attributes.

Table 8
Clustering accuracy of the evaluated algorithms on the
Soybean data set.

Algorithm  Clustering accuracy (ACC) Parameter

DPC-MD 1.0 de. = 6%

K-Modes 0.7787 +£0.1683 k=4

EKP 0.9596 + 0.0067 k=4

SBAC 0.2979 k=4
Table 9

Clustering accuracy of the evaluated algorithms on the
Congressional Voting Records data set.

Algorithm  Clustering accuracy (ACC) Parameter

DPC-MD 0.9138 de =1%

K-Modes 0.8694 + 0.0054 k=2

EKP 0.8664 +0 k=2

SBAC 0.5388 k=2
Table 10

Clustering accuracy of the evaluated algorithms on the
LED Display Domain data set.

Algorithm  Clustering accuracy (ACC) Parameter
DPC-MD 0.6860 dc =0.1%
K-Modes 0.5310+0.0568 k=10
EKP 0.6312 £ 0.0482 k=10
SBAC 0.3380 k=10

As can be seen from Tables 3 to 7, experimental results of DPC-
MD are significantly better than those obtained by other methods
for these data sets.

4.2.2. Experiments on categorical datasets

The Soybean data set consists of 47 samples with 35 categor-
ical attributes. The data objects can be divided into four classes.
Table 8 shows that the ACC value of DPC-MD is 22.13%, 4.04%,
70.21% higher than K-Modes, EKP and SBAC respectively.

Similar to the Credit Approval data set, there are a few miss-
ing values in the Congressional Voting Records data set. A com-
plete version of this data set has 435 objects. In contrast, we use
a cleaned version consisting of 232 objects. The Congressional Vot-
ing Records data set consists of 232 samples with 16 categorical
attributes. The data objects can be divided into two classes. Table 9
shows that the ACC value of DPC-MD is 4.44%, 4.74%, 37.50% higher
than K-Modes, EKP and SBAC respectively.

The LED Display Domain data set is a sample of 500 objects ob-
tained from the original data generator. Thus, the LED Display Do-
main data set consists of 500 samples with 7 categorical attributes.
The data objects can be divided into ten classes. Table 10 shows
that the ACC value of DPC-MD is 15.50%, 5.48%, 34.80% higher than
K-Modes, EKP and SBAC respectively.

As can be seen from Tables 8 to 10, K-Modes and EKP are
conducted repeatedly, because DPC-MD and SBAC without initial-
ization come out stable clustering results when the parameter is
given. Obviously, the clustering results obtained by our algorithm
are, in most of the cases, superior to the one obtained by the other
methods.

In conclusion, on these categorical and mixed-type data sets,
the ACC values obtained by DPC-MD are superior to those obtained
by other methods. The main reason for this is that K-Modes, K-
Prototypes and EKP are sensitive to initialization and are unsuit-
able for non-spherical distribution data. SBAC proposes the simi-
larity measure based on the assumption that the more uncommon
matched feature value corresponds to greater weight. We conjec-
ture that this assumption is not appropriate for these data sets.
Due to these factors, these comparison partners do not have ex-
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Fig. 1. Clustering accuracy of DPC and our algorithm on the Soybean data set.

cellent jobs. The proposed method overcomes above problems ef-
fectively. Thus it obtains good clustering results on these data sets.
Even, DPC-MD finds the optimal structure of clusters in clustering
the Soybean data set.

4.3. Robustness tests

As is known to all, the density peaks clustering algorithm is
developed to cluster numerical data. In order to facilitate compar-
ing our method with DPC, we use a pre-processing method which
make DPC work on mixed data sets. More specifically, we convert
categorical values to integer values on categorical data sets and
mixed-type data sets. Thus we can directly adopt Euclidean dis-
tance to compute dissimilarity between transformed objects.

Due to space constraints, only two of the data sets be explored
here. Fig. 1 shows the clustering accuracy of DPC and DPC-MD on
the Soybean data set with varying parameter d.. In this figure,
we can see that DPC generates good results in most cases, even
the worst value is 0.9574. Nevertheless, DPC cannot work when d.
equals to 0.1 (This reason is discussed in detail below). By contrast,
the clustering results of DPC-MD are stable no matter what value
the parameter d. is.

In some cases, DPC does a poor job of finding the clusters,
which we need to pay extra attention to. Fig. 2(a) shows that the
decision graph is produced by DPC on the Soybean data set, when
the parameter is 0.1%. Only three cluster centers can be found by
DPC on decision graph. In this case, we are incapable of making
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the right choices. It means that DPC generates wrong number of
clusters on this data set. In contrast, DPC-MD using the proposed
similarity generates correct number of clusters, when the parame-
ter is 0.1%. Fig. 2(b) shows the corresponding decision graph.

Fig. 3 shows the clustering accuracy DPC and DPC-MD on the
Heart Disease data set with varying parameter d.. DPC cannot work
on this data set occasionally, too. In this figure, the curve of our
algorithm is higher than the curve of DPC.

These figures show that the curves of our algorithm is almost
flat, or even completely flat. The above experiments demonstrate
that the choice of the parameter d. has only a minor impact on the
clustering results of our algorithm. In other words, the proposed
algorithm has strong robustness.

Beyond the decision graph, Rodriguez and Laio present a y-
graph. It provides a hint for choosing the number of centers us-
ing the plot of y = pé sorted in decreasing order. Fig. 4 displays
the y-graph results of DPC and our algorithm for clustering the
Heart Disease data set. Fig. 4(a) and (c) show the y-graph results
of DPC. It can be easily noticed that the blue dot (represents one of
two centers) is far away from the “straight line” (represents other
points), whereas it is hard to separate the yellow dot (represents
the other center) from other points. Consequently, on the Heart
Disease set, when the parameter is 4% or 6%, DPC hardly finds cor-
rect number of clusters by using the y-graph. As shown in Fig. 4(b)
and (d), the y-graph results of our algorithm show that the global
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Fig. 2. The decision graphs on the Soybean set.
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Fig. 4. The y-graphs of DPC and DPC-MD on the Heart data set.

distribution of the points is a “straight line”, but the centers of the
two clusters are the outliers deviating from the global distribution.

The combination of our proposed algorithm and the y-graph
displays a possible that the proposed algorithm can automatically
determine the cluster centers. However, this is not the research fo-
cus of this article. Hence, we will not further discuss this in this
article.

Experimental results prove that DPC-MD obtains more robust
performance than the original algorithm. The reason for this is that
the pre-processing destructs the original structure of categorical
attributes. The component of transformed categorical attributes is
also measured by Euclidean distance, so the dissimilarity metric
does not reveal the dissimilarity between categorical values. Espe-
cially, when data sets have categorical attributes with hundreds or
thousands of categories, compared with two distinct values may
yield a very large difference, while it can also yield a difference
of zero. By contrast, our proposed similarity metric can reveal the
structure of the clusters better.

5. Conclusions

We present a similarity metric for measuring numerical and
categorical values. Robustness tests prove that the proposed sim-
ilarity metric can better reveal the structure of the data sets than
pre-processing methods. The similarity metric used in K-Prototypes
and EKP needs to choose the parameter y to avoid favoring either
type of attribute. However, it comes out that choosing the param-
eter is a delicate and difficult task for users. In contrast, our simi-
larity metric can circumvent parameter adjustment effectively. Al-
though the similarity metric used in SBAC also does not need to
adjust the parameter, a computational efficient similarity measure
remains to be developed. In addition, experiment results show the
assumption used in similarity computations does not apply to all
the data sets. To better detect non-spherical distribution, we inte-

grate the similarity metric with the density peaks clustering algo-
rithm without initialization. We further bring forward a new clus-
tering algorithm for handling mixed data, called DPC-MD. The ex-
perimental results support our claim that DPC-MD is an efficient
algorithm for clustering mixed data. Besides, we improve the ro-
bustness of the original algorithm. This means that clustering re-
sults are less sensitive to the choice of the parameter d.. More
importantly, we find it possible that the proposed algorithm can
automatically determine the cluster centers based on the y-graph.

Future works will develop an automatic cluster centroid selec-
tion method on the basis of the proposed algorithm. Despite the
proposed algorithm has great stability with different values of d.,
this method also needs to determine the value of the parameter. In
future works, we will focus on investigating this problem that we
can automatically determine the parameter d..
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