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Abstract—Time series clustering is a crucial unsupervised
technique for analyzing data, commonly used in various fields,
including medicine and stock analysis. However, in real-world
scenarios, time series data inevitably contain missing values,
consequently reducing the efficiency of traditional clustering
methods. In incomplete time series, existing clustering methods
typically adopt a two-stage strategy, i.e., initially imputing missing
values followed by clustering. However, this approach of sepa-
rating imputation from clustering may lead to inconsistencies
in the optimization objectives and increase the complexity of
parameter tuning, potentially resulting in unsatisfactory clus-
tering results. This paper proposes an end-to-end deep fuzzy
clustering model for incomplete time series (EEDFC), which
jointly optimizes imputation and clustering within a unified
framework by integrating multiple losses. In the imputation
part, an attention mechanism is integrated to tackle challenges
associated with dependencies in extended sequences. In addition,
an adversarial strategy is introduced to enhance the encoder’s
imputation and feature representation learning capability, thus
reducing the error propagation from imputation to clustering.
In the clustering part, EEDFC combines a feature weighting-
based fuzzy clustering (FWFC), which considers intra-cluster
compactness and inter-cluster separateness. Furthermore, expo-
nential distance is adopted, and feature and cluster weighting
are also integrated into the Kullback-Leibler (KL) divergence
loss to improve clustering performance. We conduct extensive
experiments comparing our proposed model with eleven other
methods across ten benchmark datasets. The experimental results
demonstrate that our proposed model performs better than eleven
comparative methods.

Index Terms—Time series; fuzzy clustering; missing values
imputation; deep learning; end-to-end.

I. INTRODUCTION

T IME series data refers to a sequence of data points
collected or recorded at regular time intervals. It is

commonly used in various fields, such as financial markets
and industrial engineering, and is characterized by temporal
continuity and high dimensionality. In real-world production
scenarios, various digital devices generate vast amounts of
daily time series data. Due to equipment failure, harsh envi-
ronments, or operational errors, time series data is inevitably
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missing [1], violating the assumption of data integrity in most
traditional clustering techniques [2]. Incomplete data compli-
cates the clustering process and may degrade its performance
[3] [4]. Unfortunately, incomplete time series are prevalent in
certain fields, and re-recording them is costly and unfeasible.

The research on time series clustering techniques has
developed rapidly in recent years [5]–[8]. However, some
existing work may lack consideration of objectives consistency
between imputation and clustering and unclear memberships
in time series when dealing with incomplete time series [9].
Therefore, clustering incomplete time series is challenging.
A natural solution to the problem of clustering incomplete
time series involves initially employing an imputation [10]–
[12] algorithm to impute missing values, followed by the
application of well-established clustering techniques to the
resulting complete dataset [13]. The two-stage methods exhibit
considerable system complexity and are not automated [14].
As this approach consists of two entirely independent compo-
nents, it is susceptible to error accumulation, which potentially
impacts its overall performance. Recently, several studies have
explored end-to-end models for clustering incomplete time
series, which can optimize the entire pipeline [15] [16].
In comparison to the work in this paper, these studies do
not effectively address the issue of unclear membership in
time series. The reason for this is that they all use a hard
clustering approach, which assigns each data point to a single
cluster with a fixed membership. However, time series data
frequently exhibits intricate patterns with unclear memberships
[17] [18]. Hard clustering partitions restrict their ability to
capture the nuanced temporal dynamics inherent in time series
data, resulting in suboptimal performance when confronted
with complex data.

To solve the above problems, this paper proposes a novel
end-to-end deep fuzzy clustering model for incomplete time
series (EEDFC), which integrates both imputation and clus-
tering work into an unified deep framework. The structure
of EEDFC consists of two parts: imputation and clustering.
The imputation module imputes missing values using the
bidirectional gated recurrent unit (BIGRU)-based autoencoder
structure incorporating an attention mechanism that prioritizes
contributions from significant parts of the data. Moreover, an
adversarial strategy is introduced to enhance the encoder’s
imputation and feature representation learning capability, thus
mitigating errors from imputation to clustering tasks. The clus-
tering module integrates an improved fuzzy c-means (FCM)
[19] clustering into the autoencoder framework to generate
cluster-friendly representations. We define a single objective
function that jointly optimizes both imputation and clustering.
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We train our model using an alternating optimization strategy
to make the generated imputation values as close to the actual
value distribution as possible. This training strategy reduces
errors caused by imputation and enhances the feature repre-
sentation for the clustering task, thus improving the overall
clustering performance.

The main contributions of this paper can be summarized as
follows:
• We propose a novel end-to-end deep fuzzy clustering

(EEDFC) model designed for handling time series with
missing values. The model combines imputation and
clustering within a unified framework, implemented via a
single objective function, ultimately improving accuracy.

• We develop an improved BIGRU-based autoencoder
structure, which integrates attention mechanisms and an
adversarial training strategy into the encoder to enhance
its imputation and feature representation learning capa-
bility.

• We present the feature weighting-based fuzzy clustering
(FWFC) algorithm, which adopts the exponential distance
and incorporates feature and cluster weighting into the
Kullback-Leibler (KL) divergence loss, thereby improv-
ing its performance and robustness to noise.

The rest of the paper is structured as follows: Sec. II
mainly outlines existing time series imputation and clustering
methods. The relevant fundamental concepts and definitions
are introduced in Sec. III. Sec. IV presents the proposed
EEDFC model. Sec. V analyzes the experimental data and
experimental results. Finally, the conclusion and future work
are given in Sec. VI.

II. RELATED WORK

In this section, we briefly review the related work about
time series imputation and time series clustering.

A. Time Series Imputation

Time-series imputation is a long-standing research topic.
Recently, deep learning techniques have gained increased pop-
ularity for this task [20] [21]. Luo et al. [22] propose a novel
method for time-series imputation based on the generative
adversarial network [23] [12], which takes random noise as
the input. This method requires substantial training time and
appears unstable with random noise inputs. To solve this
problem, Luo et al. further propose an improved version named
E2GAN [24], which adopts an autoencoder structure based on
a GRU for data imputation. E2GAN takes the original time
series as its input, tackling the difficulty of training the model
and the accuracy.

Cao et al. propose BRITS [11], a bidirectional LSTM-
based model that imputes missing values without assuming
any specific data-generating process. Zhou et al. [25] introduce
a similar approach, employing a bidirectional LSTM network
with an autoencoder structure for imputing missing values in
time series data. However, a simple LSTM structure struggles
to capture long-term dependencies in time series data. To
overcome this limitation, Suo et al. propose GLIMA [26],
which integrates a multi-dimensional attention mechanism

to capture distant correlations as well as local and global
dependencies across time series. Combined with attention,
GLIMA can capture critical features in the data, overcom-
ing the limitations of traditional neural networks. Similar to
GLIMA, Du et al. propose SAITS [27], which also employs an
attention mechanism [28] [29]. However, unlike some existing
transformer-based models, SAITS learns missing values from a
weighted combination of two diagonally-masked self-attention
blocks.

B. Time Series Clustering

Time series data is typically characterized by high dimen-
sionality and significant noise. If conventional mining methods
are directly applied to the raw data, the algorithm’s time and
space complexity will be increased, impacting the final clus-
tering outcomes. Deep learning-based time series clustering
involves reducing the raw data to low-dimensional feature
representations and clustering them with suitable algorithms
[30]. Sai et al. [31] propose DTC, which uses an autoencoder
to transform raw data into low-dimensional feature represen-
tations for subsequent clustering. It naturally integrates feature
representation learning and time series clustering into a single,
fully unsupervised end-to-end learning framework. However,
DTC leads to potential instability during training since each
iteration’s target distribution is updated based on the predicted
distribution. Furthermore, the performance of DTC depends
heavily on the ability of the encoder to learn feature represen-
tations since the prediction distribution depends on the learned
feature representations. In response to these limitations, Ma et
al. propose DTCR [32], which introduces a dummy sample
generation strategy and a classifier to improve the encoder’s
capabilities. DTCR incorporates the reconstruction loss and K-
means objective into a sequence-to-sequence (seq2seq) model,
improving the overall performance and stability of the original
DTC model.

Dino et al. propose conDetSEC [33], an approach for
handling variable-length multivariate time series across di-
verse fields. conDetSEC trains an autoencoder to achieve data
embedding representation and then implements a clustering
enhancement phase to assign them to their categories. De
Jong et al. propose VaDER [15] to cluster multivariate time
series containing missing values. However, VaDER does not
impose constraints on missing values, so encoding incomplete
sequences as hidden representations may compromise the
quality of feature representations, leading to clustering errors.
As a result, VaDER inevitably experiences the adverse effects
of missing values on the overall clustering performance. Ma et
al. propose CRLI [16], similar to VADER, a model designed
for clustering time series with missing values. The critical
distinction is that CRLI applies constraints on the imputed
values it generates. However, it still performs poorly in some
cases because it does not consider the long-term dependence
of the time series and the correlation between the variables.
The above clustering algorithms incorporate k-means in their
clustering layers, which partition each data point into a specific
cluster. However, a significant concern in real-world time
series datasets is that the boundaries between clusters are
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often unclear. These algorithms’ performance degrades when
the data boundaries become fuzzy, producing unsatisfactory
results.

Different from existing studies on end-to-end models for
clustering incomplete time series, considering the complexity
of time series and unclear memberships, our method incorpo-
rates soft clustering in the clustering layer. In addition, we
employ attention mechanisms and weighting techniques to
emphasize critical information in time series by highlighting
its correlations with variables.

III. FUNDAMENTAL CONCEPTS

This section introduces two deep clustering models based
on autoencoder, DEC [34] and IDEC [35], and reviews two
traditional fuzzy clustering algorithms, FCM [19] and FCS
[36]. They are the fundamental basis for our proposed deep
fuzzy clustering model. The key symbols used in this article
are outlined in Table I.

A. Multivariate Time Series

We denote a multivariate time series (MTS) dataset as χ =
{Xi}ni=1, where n is the total number of samples. Each Xi ∈
Rl×d = (x1, . . . ,xt, . . . ,xl) is a time series, where d is the
number of variables (dimensions), and l is the sequence length.
xt ∈ Rd is the multidimensional vector of the time series Xi

at the t-th time step, and 1 ≤ t ≤ l.

B. Deep Autoencoder Clustering based on Student’s-t Distri-
bution

The autoencoder is a model designed to extract valuable
low-dimensional latent representations from its hidden layers.
It is composed of an encoder and a decoder. The encoder
compresses data into low-dimensional nonlinear features, and
the decoder reconstructs the original data from the encoded
features. Two primary deep clustering models, DEC [34]
and IDEC [35], utilize deep autoencoder to cluster data by
optimizing the autoencoder networks and cluster centers. DEC
employs a t-SNE-based centroid probability distribution for
cluster assignment and feature representations. To measure the
similarity between feature representations and cluster centers,
the cluster layer output can be expressed as follows:

qij =
(1+ ∥zi − cj∥2 /δ)−

δ+1
2∑k

v=1(1+ ∥zi − cv∥2 /δ)−
δ+1
2

, s.t.

k∑
j=1

qij = 1 (1)

where Z = (z1, . . . ,zi, . . . ,zn) and zi ∈ Rd′
for i =

1, . . . , n. Each zi represents the feature representations in
hidden layer corresponding to input data Xi ∈ χ with a
lower dimension d′. zi = f(Xi), where f(·) represents the
nonlinear mapping function of the deep autoencoder from
the input layer to the hidden layer. Let Z be assigned to k
cluster centers C = (c1, . . . , cj , . . . , ck), where cj ∈ Rd′

for
j = 1, . . . , k is the center of the j-th cluster. Let qij be the
degree of membership for zi in the j-th cluster, and let δ be
a hyperparameter typically set to 1.

TABLE I: MAJOR SYMBOLS USED IN THIS PAPER

Notation Description

χ Time-series dataset
Xi The ith time series
xt The time series at time step t

n Number of time series samples
d Dimension of time series
l Maximum time series length
Λ Missing values indicator
Z The feature representation
Q Cluster partition matrix
C Cluster center matrix
k Number of clusters
d′ Dimension of feature representation
Φ Feature weight matrix
σ Cluster weight vector
α Fuzzification coefficient
r Sensitivity coefficient of feature weight
s Sensitivity coefficient of cluster weight
η Balance coefficient between compactness and separation
γ Reciprocal of the sample variance

λ, λ0, λ1, λ2 Weight coefficients

The Student’s-t based membership qij defines the desired
target pij by:

pij =
q2ij/

∑n
i=1 qij∑k

v=1(q
2
iv/

∑n
i=1 qiv)

, s.t.

k∑
j=1

pij = 1 (2)

Finally, as shown in Eq. (3), DEC’s objective function
minimizes the KL-divergence between pij and qij :

LDEC = LKL = KL(P ||Q) =

n∑
i=1

k∑
j=1

pij log
pij
qij

(3)

IDEC extends DEC by incorporating reconstruction loss to
preserve the local structure of the data. The reconstruction
loss is calculated using the Mean Squared Error (MSE). The
objective function can be expressed as:

LIDEC = λLKL +LR

= λ

n∑
i=1

k∑
j=1

pij log
pij
qij

+

n∑
i=1

||Xi − g(zi) ||22
(4)

where LKL is the clustering loss, and LR is the reconstruction
loss. g(·) denotes the nonlinear mapping from the hidden layer
to output of the decoder, and the coefficient λ > 0 is used to
balance LKL and LR.

C. Fuzzy Clustering

Fuzzy c-means (FCM) [19] is a fundamental clustering
algorithm in the field of fuzzy theory [37]–[39]. By introduc-
ing fuzzy membership, each sample is assigned to a specific
cluster based on the degree to which it belongs, providing a
soft and flexible method of assigning samples to clusters [40].
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The update rules for the membership uij and the cluster
center cj are given by:

uij =
(∥zi − cj∥2)

1
1−α∑k

v=1(∥zi − cv∥2)
1

1−α

(5)

cj =

∑n
i=1 u

α
ijzi∑n

i=1 u
α
ij

(6)

where uij denotes the membership degree of the sample
zi belonging to the cluster center cj . α is the fuzzifier in
fuzzy clustering algorithms that determines the flexibility of
fuzzy memberships and how fuzzy the resultant clusters are.
Typically, α is set to be greater than 1. For each iteration of
FCM, the fuzzy memberships and cluster centers are updated
until convergence is achieved.

Moreover, Fuzzy Compactness & Separation (FCS) [36]
is proposed as an algorithm to improve FCM by optimizing
the fuzzy between-cluster scatter matrix and maximizing the
separation measure. By incorporating both hard c-means and
fuzzy c-means [41], FCS is updated as follows:

uij =
(∥zi − cj∥2 − ηj ∥cj − z̄∥2)

1
1−α∑k

v=1(∥zi − cv∥2 − ηv ∥cv − z̄∥2)
1

1−α

(7)

cj =

∑n
i=1 u

α
ijzi − ηj

∑n
i=1 u

α
ij z̄∑n

i=1 u
α
ij − ηj

∑n
i=1 u

α
ij

(8)

where ηj is a parameter, and z̄ represents the mean of samples.

IV. PROPOSED EEDFC MODEL

The proposed end-to-end deep fuzzy clustering (EEDFC)
model for incomplete time series is shown in Fig. 1. It consists
of two main parts: the missing value imputation module and
the clustering module. In the missing value imputation module,
an attention mechanism is integrated into the encoder structure
to enhance the model’s ability to generate imputed values.
In addition, an adversarial strategy is introduced to enhance
the encoder’s feature learning capabilities and mitigate error
propagation from imputation to clustering, resulting in high-
quality clustering results. The encoder extracts the feature
representation Z for subsequent clustering module. In the
clustering module, we integrate a fuzzy clustering objective
into the autoencoder network to concurrently acquire cluster-
friendly representations and identify clusters. The whole train-
ing process of EEDFC is trained end-to-end, optimizing the
imputation and clustering simultaneously throughout its final
objective function.

A. Overview of EEDFC

Our goal is to generate imputed values close to the actual
data distribution and obtain feature representations suitable
for clustering. The overall objective function of the proposed
method EEDFC is defined as follows:

LEEDFC = LREC + λ0LPRE + λ1LADV + λ2LKL (9)

where LREC , LPRE , and LADV are imputation-related losses
(detailed in Sec. IV-B), and LKL is a clustering-related loss
(detailed in Sec. IV-C). λ0, λ1, and λ2 represent coefficients,

which we set to 1, 1, and 0.1, respectively. In particular,
LREC represents the reconstructed loss, aiming to preserve the
structural characteristics of the original data. LPRE represents
the predicted loss, capturing the temporal dynamics of the
incomplete time series. LADV represents the adversarial loss,
motivating the generated imputed values to match the actual
data distribution as closely as possible. The imputation mod-
ule, which uses the three losses mentioned above, effectively
performs the imputation task while extracting representations
of the original time series. However, these representations
may not be suitable for the clustering task. To this end, the
Kullback-Leibler divergence loss (LKL), tailored explicitly for
clustering, is combined with the other three objective functions
for joint training [42] [43]. This integration enables the model
to learn clustering-friendly representations, enhancing cluster-
ing performance.

B. Learning Representations on Incomplete Time Series
In the context of imputing missing values of time series,

a missing values indicator set, denoted as Λ = {Mi}ni=1, is
employed to indicate whether a certain element of the time se-
ries is missing. Each indicator Mi = (m1, . . . ,mt, . . . ,ml),
where mt ∈ {0, 1}d. If the o-th variable of xt is missing, we
set the corresponding component of mt to 0; otherwise, mt

is set to 1.
The encoder uses a bidirectional gated recurrent unit (BI-

GRU) to impute missing values. BIGRU consists of two
GRUs: a forward and a backward GRU. They have a similar
network structure, but the inputs are in opposite directions.
BIGRU outperforms GRU by incorporating information from
past, present, and future time steps, leading to a better under-
standing of data structure and features.

We define
→
X̂i = (

→
x̂1, . . . ,

→
x̂t, . . . ,

→
x̂l) as the pre-

dicted data generated by the forward GRU and
←
X̂i =

(
←
x̂1, . . . ,

←
x̂t, . . . ,

←
x̂l) as the predicted data generated by the

backward GRU. The multidimensional vectors of the predicted
sequences at each time step are represented by:

→
x̂t = Wx

→
ht−1 + bx (10)

←
x̂t = Wx

←
ht−1 + bx (11)

where
→
x̂t and

←
x̂t are multidimensional vectors of the forward

and backward GRU predicted sequences at the t-th time step.
Wx and bx are parameters, and

→
ht−1 and

←
ht−1 are the hidden

states of previous time step.
1) Predicted Loss: In prediction tasks, the predicted loss

is usually calculated by comparing the predicted value with
the actual value. However, in an unsupervised scenario, the
actual value of the missing part is unknown. To address this,
we employ an approximation strategy. Specifically, our goal
is to ensure that the values of the non-missing parts generated
by the model are close to their corresponding actual values.
If they are highly matched, then the predicted values of the
missing parts are also likely to be highly accurate. Based on
this idea, we define the prediction loss as follows:

LPRE =
1

n

n∑
i=1

∥∥∥∥(Xi −
→

X̂i)⊙Mi

∥∥∥∥2

2

+
1

n

n∑
i=1

∥∥∥∥(←Xi −
←

X̂i)⊙
←
M i

∥∥∥∥2

2

(12)
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Fig. 1: The architecture of EEDFC. We take the time series data {Xi}ni=1 as the input to the encoder, which is processed by

the encoder to obtain the imputed sequence {
∼
Xi}ni=1, and the feature representation Z. The role of the discriminator is to

enhance the learning capability of the encoder. Fuzzy clustering is done on the extracted feature representation Z to get the
clustering results. The imputation and clustering is done in a unified framework.

where n represents the number of samples, and
←
Xi =

(
←
x1, . . . ,

←
xt, . . . ,

←
xl) (i.e., the input to the backward GRU)

is the reverse of Xi = (x1, . . . ,xt, . . . ,xl). Mi =

(m1, . . . ,mt, . . . ,ml) and
←
M i = (

←
m1, . . . ,

←
mt, . . . ,

←
ml)

represent the missing value indicator corresponding to Xi and
←
Xi.

During training, the above objective function may lead to
overfitting issues. Specifically, Eq. (12) represents the training
error between the true values of the non-missing portion (re-
garded as labels) and the corresponding generated values (con-
sidered as training data). However, owing to the unavailability
of true values for the missing portion (similar to unknown
labels in test data), computing the test error, representing the
difference between the true values of the missing data and
their generated estimates, is not feasible. Therefore, we train
the model to learn data structures and patterns from the non-
missing data by minimizing the training error, and apply the
learned patterns to the entire time series. Nevertheless, when
the training error (i.e., Eq. (12)) becomes too small, overfit-
ting may occur. To accurately generate predicted values for
missing data, we introduce a dropout mechanism to mitigate
overfitting.

Let
∼
χ = {

∼
Xi}ni=1, where each

∼
Xi = (

∼
x1, . . . ,

∼
xt, . . . ,

∼
xl)

denote the imputed sequence. The multidimensional vectors
of the imputed sequence at each time step can be computed
by combining the information of the original and predicted

sequences as follows:
→
∼
xt = mt ⊙ xt + (1−mt)⊙

→
x̂t (13)

←
∼
xt =

←
mt ⊙

←
xt + (1− ←mt)⊙

←
x̂t (14)

∼
xt = (

→
∼
xt +

←
∼
xt)/2 (15)

where
→
∼
xt and

←
∼
xt are multidimensional vectors of the forward

and backward GRU imputed sequences at the t-th time step.
According to the properties of the BIGRU model, the hidden

states at the current time step are derived from the hidden
states at the previous time step and the multidimensional
vectors of the imputed sequences at the current time step. The
updating equation is expressed as follows:

→
ht = tanh(Wh

→
ht−1 +Uh

→
∼
xt + bh) (16)

←
ht = tanh(Wh

←
ht−1 +Uh

←
∼
xt + bh) (17)

where tanh(·) is the activation function, Wh, Uh, and bh are

parameters, and
→
ht and

←
ht are the hidden states at the t-th

time step.
2) Reconstructed Loss: Time series data often has specific

structures that are critical for understanding its content. During
autoencoder training, the model endeavors to capture these
structural characteristics by minimizing the reconstruction loss
(i.e., the difference between the original and reconstructed
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sequences). However, traditional reconstruction losses cannot
directly be applied to time series data with missing values. To
address this issue, we use masked mean squared error (masked
MSE) as the reconstruction loss, where ”masked” denotes that
the model excludes missing values during loss computation.
The formula for this loss is as follows:

LREC =
1

n

n∑
i=1

∥(Xi − g(zi))⊙Mi∥22 (18)

where g(·) denotes the nonlinear mapping from the hidden
layer to the output of the decoder. zi represents the learned
feature representation, which is fed into the decoder to re-
construct the original time series. The feature representation
Z = (z1, ...,zi, ...,zn) can be computed by Eqs. (19)-(24).

An attention mechanism is incorporated into the encoder
structure to focus on information relevant to the missing data.
This enhances the model’s ability to generate imputed values
and obtain more representative feature representations. The
attention scores are calculated based on the hidden states at
the t-th time step and the BIGRU outputs as follows:

→
∆ = softmax(

→
ht ⊙

→
Γ) (19)

←
∆ = softmax(

←
ht ⊙

←
Γ) (20)

where
→
∆ and

←
∆ represent the attention scores, indicating the

learned contribution and relevance strength of the data at each
time step in the sequence.

→
Γ and

←
Γ represent the forward and

backward GRU outputs, respectively. The softmax activation
function normalizes the weight scores, ensuring their sum
equals 1.

The attention mechanism results can be calculated as fol-
lows:

→
A =

→
∆⊙

→
Γ (21)

←
A =

←
∆⊙

←
Γ (22)

where
→
A and

←
A represent the results of the attention mecha-

nism for forward and backward GRU, respectively.
The gating mechanism is introduced to enhance information

fusion from the attention mechanism, thereby augmenting
the system’s decision-making capabilities. The intermediate
feature representation Z can be obtained by:

Z = concat(gate(
→
A)⊙

→
A, gate(

←
A)⊙

←
A) (23)

gate(
→
A) = sigmoid(WA

→
A+ bA) (24)

where gate(·) represents the gating mechanism, WA and bA
are parameters, and sigmoid(·) is activation function. It is
worth noting that the output of the gate(·) ranges in the inter-
val [0, 1], allowing it to adjust the information obtained from
the attention operation. The gating mechanism can select or
retain valuable features to support the task at hand, leading to
more efficient and effective utilization of relevant information
and improving overall task performance.

3) Adversarial Loss: We integrate a discriminator into our
architecture and utilize adversarial training to enhance the
generator’s (encoder’s) data generation capability (specifically,
time series imputation capability). In our method, the generator
aims to impute missing values accurately, while the discrimi-
nator tries to differentiate between the observed and imputed
values in an imputed sequence. Formally, the discriminator is
trained by minimizing the following objective function:

LDIS = − 1

n

n∑
i=1

[Mi⊙log(D(
∼
Xi))+(1−Mi)⊙log(1−D(

∼
Xi))]

(25)
where D(·) denotes the indicator assigned by the discrimi-
nator, which represents the probability that each element in
∼
Xi is an actual observed value. We aim for the discriminator
to assign a high probability D(

∼
Xi) to actual observed values

and a low probability to generated imputed values. In this
manner, we train the discriminator to distinguish between the
actual observed values and the generated imputed values by
minimizing Eq. (25).

The generator is designed to generate an imputed sequence
that is as realistic as possible, making it challenging for the
discriminator to differentiate between actual observed values
and imputed values within the sequence. Therefore, for gen-
erated imputed values, the generator wants the discriminator’s
output probability D(

∼
Xi) close to 1, i.e., the discriminator

considers the generated imputed values to be actual observed
values. Therefore, the generator is trained to maximize the
discriminator’s misclassification rate by minimizing Eq. (26).
The adversarial objective function of the model is defined as
follows:

LADV =
1

n

n∑
i=1

(1−Mi)⊙ log(1−D(
∼
Xi)) (26)

The detailed process of feature representation learning is
described in Algorithm 1.

Algorithm 1: The Feature Representation Learning
Algorithm.
Input: The input data χ = {Xi}ni=1; The maximum

iteration: Maxepoch.
Output: Feature representation Z.

1 Initialize h;
2 for epoch = 1 to Maxepoch do
3 Compute the imputed data

∼
χ with (10)-(17);

4 Feed the imputed data
∼
χ into the discriminator;

Compute the attention score with (19) and (20), the
attention result with (21) and (22);

5 Obtain the feature representation Z with (23);
6 Feed Z into the decoder to reconstruct the original

time series, and employ Z for the subsequent
clustering stage.

7 end
8 return Feature representation Z.
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C. Fuzzy Clustering with KL-Divergence Loss

Traditional FCM and FCS clustering algorithms face sev-
eral challenges, such as sensitivity to noise and outliers and
dependence on initial cluster centers. To overcome these
challenges, we propose the feature weighting-based fuzzy
clustering (FWFC) algorithm incorporating localized feature
weighting to enhance clustering accuracy. We also introduce a
cluster weighting technique to reduce the influence of poorly
initialized cluster centers [44]. Furthermore, we define a novel
objective function that uses a non-Euclidean distance metric,
which is robust to noise and outliers, as suggested by [45].

The proposed FWFC has the following objective function:

LKL = KL(P ||Q) =

n∑
i=1

k∑
j=1

pij log
pij
qij

(27)

where n refers to the sample number, and k denotes the cluster
number. Q ∈ Rn×k is a matrix, where each element qij
represents the membership degree of the i-th sample to the j-th
cluster. The derivation of the update strategy for qij is detailed
in section A of the supplementary material. P ∈ Rn×k is also
a matrix, where each element pij is the target distribution of
the Student’s-t based membership qij , denoted by Eq. (2).

The iterative optimization of the algorithm starts with ini-
tializing the cluster center C, feature weight Φ, and cluster
weight σ.

1) Update Q by Fixing C, Φ, and σ:

qij =

(σs
j

d′∑
a=1

φr
jadist(zia, cja)− ηjσ

s
j

d′∑
a=1

φr
jadist(cja, z̄a))

1
1−α

k∑
v=1

(σs
v

d′∑
a=1

φr
vadist(zia, cva)− ηvσs

v

d′∑
a=1

φr
vadist(cva, z̄a))

1
1−α

(28)
where α > 1 is the fuzzifier, d′ is the dimension of feature

representations in hidden layer, r represents the sensitivity
coefficient of feature weight, and s represents the sensitivity
coefficient of cluster weight. zia indicates the a-th feature in
the i-th sample, z̄a represents the mean of the a-th feature of
the sample, and cja is the center of the j-th cluster denoted
by Eq. (31). φja refers to the weight of the a-th feature in the
j-th cluster denoted by Eq. (32), and σj represents the weight
of the j-th cluster denoted by Eq. (34).

The term dist(·, ·) indicates a exponential distance metric,
and is defined as follows:

dist(zia, cja) = 1− E(zia, cja) (29)

where E(zia, cja) = exp(−γa(∥zia − cja∥2)). ∥ · ∥ is the L2

norm, and γa represents the reciprocal of the variance of the
a-th feature in Z.

The algorithm restricts qij to a specific range interval
[0, 1]. However, the value of qij in the update Eq. (28)
may be negative for certain data points zi, which requires
imposing some restrictions. For a given data point zi,
if σs

j

∑d′

a=1 φ
r
jadist(zia, cja) ≤ ηjσ

s
j

∑d′

a=1 φ
r
jadist(cja, z̄a)

then qij is set to 1, and qij′ is set to 0 for all j′ ̸= j. That is,
if the exponential-distance between the data point and the j-
th cluster center is smaller than ηjσ

s
j

∑d′

a=1 φ
r
jadist(cja, z̄a),

these data points will then belong exactly to the j-th cluster

with membership value of 1. Each cluster in algorithm will
have a crisp boundary such that all data points inside this
boundary will have a crisp membership value qij ∈ {0, 1}
and other data points outside this boundary will have fuzzy
membership value qij ∈ [0, 1].
ηj is a parameter designed to ensure non-overlap among the

k clusters, and it is defined as follows:

ηj =
(β/4)minj′ ̸=j(1− exp(−γ || cj − cj′ ||2))

maxv(1− exp(−γ || cv − z̄ ||2))
(30)

where 0 ≤ β ≤ 1 is a coefficient to balance within-cluster and
between-cluster distance in the cluster space. γ represents the
reciprocal of the variance of samples, and z̄ represents the
mean of samples.

2) Update C by Fixing Q, Φ, and σ:

cja =

n∑
i=1

qαijE(zia, cja)zia − ηj
n∑

i=1

qαijE(cja, z̄a)z̄a

n∑
i=1

qαijE(zia, cja)− ηj
n∑

i=1

qαijE(cja, z̄a)
(31)

C ∈ Rk×d
′

is a matrix, where each element cja denotes
the center of the j-th cluster, and qij is the fuzzy membership
value calculated by Eq. (28).

3) Update Φ by Fixing Q, C, and σ:

φja =



1

κa
ifBφja = 0 andκa = |{e : Bφje = 0}|

0 ifBφja ̸= 0 and∃eBφje = 0

1∑d′

e=1

[
Bφja

Bφje

] 1
r−1

ifBφje ̸= 0 ,∀1 ≤ e ≤ d′
(32)

where

Bφja =

n∑
i=1

qαijdist (zia, cja)−
n∑

i=1

ηjq
α
ijdist (cja, z̄a) (33)

Φ ∈ Rk×d
′

is a matrix, where each element φja refers to the
weight of the a-th feature in the j-th cluster. The theoretical
derivation for formula φja is provided in section A of the
supplementary material. r > 1 or r < 0 is set manually.

4) Update σ by Fixing Q, C, and Φ:

σj =



1

ϱj
ifBσj = 0 and ϱj = |{v : Bσv = 0}|

0 ifBσj ̸= 0 and ∃v Bσv = 0

1∑k
v=1

[
Bσj

Bσv

] 1
s−1

ifBσv ̸= 0 ,∀1 ≤ v ≤ k

(34)

where

Bσj =

n∑
i=1

d′∑
a=1

qαijφ
r
jadist (zia, cja)

−
n∑

i=1

d′∑
a=1

ηjq
α
ijφ

r
jadist (cja, z̄a)

(35)

σ ∈ Rk is a vector, where each element σj represents the
weight of the j-th cluster. Section A of the supplementary
material provides the theoretical derivation for σj . 0 ≤ s < 1
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is determined automatically during iteration. Related expla-
nations regarding r and s can be found in section B of the
supplementary material.

The FWFC algorithm is presented in Algorithm 2.

Algorithm 2: The FWFC Algorithm.
Input: The feature representation Z = {zi}ni=1;

Number of clusters k; Number of variates d′;
Parameters smax, sinit, sstep, ε, β; Sensitivity
coefficient of feature weight r; Fuzzification
coefficient α; Maximum iteration: Maxiter.

Output: Membership matrix Q; Clustering loss LKL.
1 Initialize L

(0)
KL=INF; sinit = 0;φ

(0)
ja = 1

d′ ,∀j =
1, ..., k,∀a = 1, ..., d

′
;σ

(0)
j = 1

k ,∀j = 1, ..., k;
2 Initialize cluster centers C(0) with random values;
3 set empty=FALSE, s = sinit;
4 for iter = 1 to Maxiter do
5 Update Q(iter) with (28) by fixing C(iter−1),

Φ(iter−1), and σ(iter−1);
6 Update C(iter) with (31) by fixing Q(iter),

Φ(iter−1), and σ(iter−1);
7 if empty or singleton clusters have occurred then
8 empty=TRUE;
9 s = s− sstep;

10 if s < sinit then
11 return NULL;
12 else
13 Φ(iter) = Φ(iter−1);
14 σ(iter) = σ(iter−1);
15 end if
16 else if s < smax and empty=FALSE then
17 s = s+ sstep;
18 Update Φ(iter) with (32) by fixing Q(iter),

C(iter), and σ(iter−1);
19 Update σ(iter) with (34) by fixing Q(iter),

C(iter), and Φ(iter);
20 end if
21 Compute the clustering loss L

(iter)
KL with (27);

22 until |L(iter)
KL −L

(iter−1)
KL | < ε or iter ≥ Maxiter

23 end
24 return Membership matrix Q; Clustering loss LKL.

D. The Training Algorithm

We adopt an alternating optimization strategy to train our
model, aiming to make the generated imputed values as close
to the actual data distribution as possible and achieve optimal
clustering results. The algorithm of the proposed EEDFC
model is summarized in Algorithm 3.

V. EXPERIMENTAL STUDIES

In this section, we conduct comparative experiments across
multiple time series datasets to evaluate the proposed EEDFC’s
performance. We also conduct ablation studies, parameter sen-
sitivity analyses, robustness analyses at different missing rates,

Algorithm 3: The EEDFC Algorithm.
Input: The input data χ = {Xi}ni=1; The number of

clusters k; The coefficients λ0, λ1, and λ2; The
maximum iteration: Maxepoch.

Output: Clustering results y.
1 for epoch = 1 to Maxepoch do
2 Invoke Algorithm 1 to obtain the feature

representation Z;
3 Compute the prediction loss LPRE with (12), the

reconstruction loss LREC with (18), the
discriminator loss LDIS with (25), the adversarial
loss LADV with (26);

4 Input Z into the clustering module and apply
Algorithm 2 to obtain the membership degree Q
and clustering loss LKL;

5 Compute the final loss LEEDFC with (9);
// Discriminator optimization

6 Adjust discriminator with SGD by (25);
// EEDFC optimization

7 Fine feature representation Z with SGD by (9).
8 end
9 return Clustering results y.

and noise robustness experiments. We present all experimental
results, analysis outcomes, and conclusions.

A. Datasets and Experimental Settings

To validate the performance of our proposed model, we
apply it to benchmark datasets extracted from the UCR and
UCI databases. Detailed statistics for these datasets can be
found in section C of the supplementary material. In our work,
we configure the autoencoder structure in the model to be a
common architecture: d−200−200−500−d′−500−200−
200 − d. Here, d represents original data’s dimension, and
d′ represents the dimension of feature representations, which
we set to 10. Both the encoder and decoder networks employ
GRU. The batch size is set to 32, and the learning rate is 0.001.
We prevent overfitting by applying dropout to hidden layers
during model training. Experiments are run on a server with
the environment of Intel Core i9-12900H, 2.50-GHz CPU, 16-
GB RAM and a GeForce GTX 3060-Ti 8G GPU.

B. Algorithms in Comparison

We select eleven benchmark algorithms to compare with
the proposed EEDFC1. These algorithms can be divided into
two categories: two-stage methods (imputing missing values
followed by clustering) and one-stage methods (joint opti-
mization). Two-stage methods include SAITS [27] + Times-
C [46], SAITS + conDetSEC [33], SAITS + T-GMRF [47],
TIDER [48] + Times-C, TIDER + conDetSEC, TIDER + T-
GMRF, BRITS [11] + Times-C, BRITS + conDetSEC, and
BRITS + T-GMRF. One-stage methods include VaDER [15]
and CRLI [16]. In section D of the supplementary material,

1Code available: https://github.com/Du-Team/EEDFC
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TABLE II: RI COMPARISON OF CLUSTERING PERFORMANCE ON TEN DATASETS

Imputer Clustering SC Meat Coffee Ham Wine Libras Epilepsy RS UG EC Best avg Rank

SAITS
Times-C 0.8489 0.7804 0.7311 0.5098 0.4987 0.8951 0.5867 0.507 0.7949 0.5933 0 6

conDetSEC 0.8785 0.7128 0.5053 0.4955 0.4913 0.9416 0.6848 0.7213 0.8425 0.593 1 5.8
T-GMRF 0.8106 0.7028 0.7169 0.5042 0.5107 0.8771 0.7258 0.5676 0.7327 0.5285 0 7.2

TIDER
Times-C 0.8012 0.6405 0.4894 0.5305 0.4932 0.8916 0.6206 0.6211 0.8287 0.5976 0 7.5

conDetSEC 0.8987 0.7410 0.4921 0.4986 0.4934 0.9271 0.6528 0.7402 0.8497 0.5769 0 5.3
T-GMRF 0.8192 0.4554 0.5159 0.528 0.4927 0.8821 0.7314 0.6325 0.7177 0.5189 0 8.1

BRITS
Times-C 0.8647 0.7250 0.6261 0.5340 0.4973 0.8905 0.5541 0.6354 0.8531 0.5989 0 5.2

conDetSEC 0.8731 0.7968 0.4841 0.4956 0.4969 0.9361 0.6616 0.7212 0.857 0.5646 1 5.3
T-GMRF 0.8316 0.6876 0.6984 0.5161 0.5206 0.8251 0.7318 0.6799 0.726 0.5355 0 6.5

VaDER 0.1639 0.3220 0.4841 0.4956 0.4906 0.0615 0.2463 0.2474 0.1223 0.2471 0 11.6
CRLI 0.8389 0.6947 0.4841 0.5041 0.4969 0.9037 0.5875 0.5035 0.7956 0.6151 0 7.3

EEDFC 0.9013 0.8819 1 0.781 0.8288 0.9164 0.8217 0.7805 0.8398 0.7255 8 1.7

TABLE III: NMI COMPARISON OF CLUSTERING PERFORMANCE ON TEN DATASETS

Imputer Clustering SC Meat Coffee Ham Wine Libras Epilepsy RS UG EC Best avg Rank

SAITS
Times-C 0.6267 0.6438 0.5100 0.0201 0.0094 0.5361 0.1076 0.0838 0.4332 0.012 0 7

conDetSEC 0.729 0.5947 0.0336 0.0007 0.001 0.7442 0.2565 0.3864 0.539 0.0592 1 4.9
T-GMRF 0.4826 0.5089 0.493 0.1579 0.111 0.4525 0.3227 0.106 0.234 0.025 0 6

TIDER
Times-C 0.601 0.2827 0.0087 0.0519 0.0045 0.5313 0.1117 0.2312 0.5275 0.0096 0 8.1

conDetSEC 0.7454 0.541 0.0351 0.0053 0.0051 0.6580 0.1852 0.4287 0.535 0.0546 1 5
T-GMRF 0.4153 0.1112 0.1844 0.2103 0.0103 0.4175 0.3102 0.1099 0.2014 0.013 0 7.6

BRITS
Times-C 0.6953 0.4419 0.2154 0.0568 0.0096 0.5367 0.1215 0.2338 0.5434 0.0072 0 6.3

conDetSEC 0.7137 0.6058 0.0012 0.0007 0.0197 0.7014 0.1774 0.3611 0.5195 0.04 0 5.4
T-GMRF 0.4055 0.4992 0.5328 0.1798 0.1065 0.3701 0.3215 0.1635 0.2236 0.018 0 6.4

VaDER 0.0503 0 0 0 0 0 0.0217 0 0 0 0 12.00
CRLI 0.5954 0.3610 0.0012 0.013 0.0283 0.5562 0.1613 0.0516 0.3044 0.0305 0 7.6

EEDFC 0.6955 0.7594 1 0.5656 0.6374 0.6702 0.5983 0.5718 0.5579 0.4385 8 1.5

these algorithms are described in detail. For the comparative
methods, we use open-source code implementations, adhering
to the parameter configurations as specified in the respective
papers.

C. Evaluation Metrics

We use four evaluation metrics to assess the clustering
performance of the proposed EEDFC and the comparison
algorithms. These metrics include rand index (RI), normalized
mutual information (NMI), accuracy (ACC), and purity (PUR).
The range of values for four metrics is [0, 1]. The closer the
value of these four metrics is to 1, the better the clustering
effect of the model. The details of the metrics are provided in
section E of the supplementary material.

D. Experimental Results

In this section, several experiments are conducted to eval-
uate the performance of the proposed EEDFC in this paper.
Tables II - III show the clustering performance of the proposed
EEDFC and the comparison methods evaluated by RI and
NMI. In section F of the supplementary material, we further
compare the performance of other methods and ours on
ACC and ARI, and present an experimental analysis. Overall,
EEDFC exhibits superior performance, achieving the highest
scores on eight out of ten datasets for RI and NMI metrics. The
average ranking for the two metrics is 1.7 and 1.5, respectively.
A detailed analysis of each metric’s performance is given
below.

On the RI metric, EEDFC achieves first place on eight
datasets, with an average metric ranking of 1.7 on ten datasets.

On the Coffee, Ham, and Wine datasets, EEDFC attains the top
position with RI values of 1, 0.781, and 0.8288, respectively.
These values surpass the second-place scores by 0.2689, 0.247,
and 0.3082 for each dataset, where the second-place scores are
0.7311, 0.5340, and 0.5206, respectively. EEDFC’s RI values
on the Libras and UG datasets are only 0.0252 and 0.0172
lower than the first-place scores, respectively.

Regarding the NMI metric, EEDFC secures the first position
on eight datasets, with an average metric ranking of 1.5 on
ten datasets. On the Meat, Coffee, Ham, Wine, Epilepsy,
RS, UG, and EC datasets, EEDFC secures the top position
with performance scores of 0.7594, 1, 0.5656, 0.6374, 0.5983,
0.5718, 0.5579, and 0.4385, respectively. On the Wine and
EC datasets, EEDFC achieves NMI values of 0.6374 and
0.4385, respectively, while most competitors perform below
0.1. Moreover, on the Coffee, Ham, and Wine datasets,
EEDFC surpasses the second-best method by 0.4672, 0.3553,
and 0.5264, respectively, with the latter achieving scores of
0.5328, 0.2103, and 0.111.

In terms of the current one-stage methods, VaDER ranks the
lowest on four metrics on average. We suspect that this phe-
nomenon arises from its generative framework’s performance,
which is more suited to larger datasets but performs inad-
equately on smaller ones. While the same one-stage method,
CRLI, is a discriminative framework that optimizes imputation
and clustering simultaneously. This improves the clustering
performance for incomplete time series. For two-stage meth-
ods, Times-C and T-GMRF perform worse than conDetSEC
on average. We speculate that this may be because they
only utilize the traditional dimensionality reduction approach,
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TABLE IV: ABLATION EXPERIMENTS OF MODULE COMPONENTS

Module components Meat Ham Epilepsy RS
RI NMI RI NMI RI NMI RI NMI

w/o attention mechanism 0.6006 0.2786 0.5055 0.0639 0.5754 0.194 0.6687 0.2234
w/o adversarial strategy 0.7271 0.4917 0.5007 0.0405 0.7728 0.4585 0.6908 0.3571
w/o exponential distance 0.7158 0.5093 0.4956 0.0011 0.4548 0.1704 0.5824 0.1415

w/o feature and cluster weighting 0.6881 0.3633 0.6769 0.3111 0.7032 0.336 0.6481 0.1291
EEDFC 0.8819 0.7594 0.781 0.5656 0.8217 0.5983 0.7805 0.5718

which ignores the more complex nonlinear relationships in
time series data. Unlike Times-C and T-GMRF, conDetSEC
employs an autoencoder to automatically learn features based
on the task requirements, significantly improving clustering
performance. Based on the experimental results, it appears
that one-stage methods CRLI and VaDER are not as effective
as the two-stage methods in some situations. We speculate
that this may be because of the following reasons: (1) Two-
stage methods produce better imputation results, so the error
introduced in clustering is small enough. (2) Despite the fact
that the two-stage methods may introduce some errors in
the imputation stage, they are corrected to some extent in
the clustering stage by selecting appropriate algorithms and
parameters. The one-stage methods CRLI and VaDER have
difficulty in controlling the parameters and thus perform less
well than the two-stage methods in some cases. Table III
indicates that VaDER’s NMI score is zero on most datasets
because it assigns all samples to a single cluster in these cases.
EEDFC outperforms eleven benchmark algorithms, which
is attributed to its deep clustering architecture and unified
training approach that optimizes imputation and clustering
concurrently. Specifically, an attention mechanism is integrated
into the encoder to enhance the model’s imputed capabilities,
which pays more attention to the information associated with
missing data. EEDFC incorporates a fuzzy clustering method
with weights to align learned features more effectively with
the clustering task. Furthermore, an adversarial strategy is
employed to mitigate error propagation from imputation to
clustering, significantly enhancing EEDFC’s performance.

E. Ablation Studies

To verify the effectiveness of each component proposed in
EEDFC, we conduct comparison experiments between EEDFC
and its four variants. These variants are specifically designed to
evaluate the impact of the attention mechanism and adversarial
strategy in the imputation module, as well as the exponential
distance and weighting mechanism in the clustering module.
Specifically, w/o attention mechanism removes the attention
mechanism, w/o adversarial strategy removes the adversarial
strategy, w/o exponential distance replaces the exponential
distance with the euclidean distance, and w/o feature and
cluster weighting removes the weighting mechanism, setting
r and s to fixed values. Table IV presents the comparative
experimental results of EEDFC and its four variants on four
datasets in terms of RI and NMI metrics. The best performance
values for each dataset are highlighted in bold. Fig. 2 presents
a visual comparison of clustering performance.

Overall, each module plays an essential role in EEDFC. It
is evident from the results that the variant without exponential

distance performs the worst, which confirms our motivation
for integrating exponential distance into the clustering process
is effective. In addition, it can be observed that the attention
mechanism plays a more critical role than feature and cluster
weighting, which may be attributed to the good performance
of the attention mechanism in focusing on key features during
representation learning. Furthermore, w/o attention mech-
anism results in an average decrease of 69% in the NMI
metric across all datasets, while w/o adversarial strategy,
which is also part of the imputation module, experiences a
decrease of 45%. This indicates that attention mechanism
plays a more significant role than adversarial strategy in our
proposed method. Based on the results, it appears that all
components of EEDFC are indispensable and can significantly
improve the overall clustering performance of the proposed
method.

To further analyze the significance of each loss component
in EEDFC, we conduct an ablation study of loss components
on four datasets. We provide detailed analyses and visual
results in section G of the supplementary material.
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Fig. 2: Histogram visualising of ablation experiments results.

F. Parameter Sensitivity Analysis

In the proposed EEDFC, hyper-parameters are of critical
importance. We use the grid search method to find sensitive
regions of hyper-parameters, focusing specifically on the sen-
sitivity analysis of five selected parameters, β, α, λ0, λ1, and
λ2. The detailed experimental analysis can be found in section
G of the supplementary material.

G. Robustness Analysis

To further investigate the robustness and effectiveness of our
method, we conduct robustness experiments on Meat and RS,
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Fig. 3: The changing trend of clustering performance with different missing rates on Meat and RS.

varying the missing rate from 0.1 to 0.7 with an interval of 0.2.
We utilize RI and NMI metrics to compare the performance
of our method, EEDFC, with two selected comparative algo-
rithms: the one-stage method CRLI and the two-stage method
BRITS + conDetSEC. Fig. 3 presents the trend in clustering
performance of our method, EEDFC, compared to CRLI, and
BRITS + conDetSEC, as the missing rate varies from 0.1 to
0.7. We can observe that the RI and NMI values decrease
as the missing rate increases. As can be observed from Fig.
3, with the missing rate increasing, our method’s performance
decreases slowly in a certain region. However, the performance
of the comparative algorithms BRITS + conDetSEC and CRLI
significantly decreases. Especially prominent in Fig. 3(b), as
the missing rate varies from 0.1 to 0.7, CRLI’s performance
drops from 0.4 to 0, and BRITS + conDetSEC’s degrades from
0.6 to 0. We speculate that our EEDFC performs imputation
and clustering simultaneously, and employs an attentional
mechanism and an adversarial strategy to reduce the error
introduced from imputation to soft clustering, resulting in
significant robustness. To further analyze how EEDFC’s loss
components collaborate to maintain clustering performance
when handling datasets with high missing rates, we conduct an
ablation study on several datasets with a missing rate of 0.7.
Detailed analyses and visual results are presented in section
H of the supplementary material.

H. Noise Experiments

To assess the robustness of EEDFC against noise, we intro-
duce a specific ratio of noisy data to the Meat and Epilepsy
datasets. Subsequently, we utilize the NMI metric to compare
the performance of EEDFC with two alternative methods: the
one-stage method CRLI and the two-stage method SAITS +
conDetSEC.

Fig. 4(a) presents the experimental results for the Meat
dataset with noisy data. Interestingly, EEDFC’s performance
demonstrates enhancement by introducing approximately 10%
noise into the dataset. We speculate that introducing a certain
level of noise may act as some regularisation, preventing the
model from overfitting and thus improving its generalization
performance. In addition, even if the percentage of noise
in the data increases, there is no deterioration compared to
the results without adding noise. However, with the noise
ratio increasing, CRLI’s performance drops significantly, and

SAITS + conDetSEC’s performance also fluctuates. As can
be seen in Fig. 4(b), experimental results are presented for the
Epilepsy dataset with noisy data. With the addition of noise,
the performance of EEDFC is relatively smooth, while CRLI
and SAITS + conDetSEC show a gradual decline.

From the above experimental results, it can be concluded
that EEDFC is more effective in handling noisy and abnormal
data, showing high robustness.
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Fig. 4: Noise robustness analysis on Meat and Epilepsy.

I. Running Time Comparison

To evaluate the computational complexity of EEDFC, we
conduct runtime comparison experiments with two one-stage
methods across all datasets. We set some key parameters of
the two one-stage comparison methods to be the same as those
of EEDFC to ensure that the three models operate under the
same conditions as much as possible. These parameters in-
clude learning rate, batch size, and intermediate representation
dimension.

Fig. 5 visualizes the runtime results. It can be observed that
VaDER is frequently the slowest in many instances. EEDFC is
slightly disadvantaged compared to the other two comparison
algorithms when dealing with Coffee, which has a small
sample size, and Libras, which has short time steps. However,
EEDFC exhibits a clear advantage when processing UG, which
has a large sample size, and EC, which has long time steps.
It can be concluded that our proposed method demonstrates
better scalability on time series data with large sample sizes
and long time steps, compared to the other two one-stage
methods.
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J. Convergence Analysis

Fig. 6 presents curves of loss values versus epochs for
the datasets Meat, Ham, Epilepsy, and RS to illustrate the
convergence of EEDFC. As shown in Fig. 6, the loss value
decreases rapidly at the beginning and gradually reaches a
stable state, indicating that the proposed EEDFC converges
well.
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Fig. 6: Relationship curve between loss values and epochs.

VI. CONCLUSION

This paper proposes a novel end-to-end deep fuzzy clus-
tering model designed for incomplete time series, aiming
to concurrently acquire feature representations and identify
clusters. Within EEDFC, missing values imputation and clus-
tering are performed simultaneously, improving clustering
performance while preserving the original data structure. This
approach yields feature representations that are better suited
to clustering tasks. In the missing value imputation stage, the
attention mechanism is used to retain the most informative
and task-relevant parts of the time series, thus maximizing

the representativeness of the representation. In the clustering
stage, the proposed fuzzy clustering algorithm considers intra-
cluster compactness and inter-cluster separability to generate
more meaningful clusters. The clustering approach employs
local feature weighting so that different features have different
weights within each cluster, and the cluster weights are calcu-
lated dynamically. In addition, an adversarial strategy is used
to mitigate error propagation from imputation to clustering,
resulting in high-quality clustering results.

In future work, we plan to investigate the time series
multimodal clustering problem more deeply. We will focus
on integrating multi-source time series datasets from different
domains into a unified clustering model.
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learning for clustering of multivariate clinical patient trajectories with
missing values,” GigaScience, vol. 8, no. 11, p. giz134, 2019.

[16] Q. Ma, C. Chen, S. Li, and G. W. Cottrell, “Learning representations
for incomplete time series clustering,” in Proceedings of the 35th AAAI
Conference on Artificial Intelligence, 2021, pp. 8837–8846.

[17] H. Guo, M. Wan, L. Wang, X. Liu, and W. Pedrycz, “Weighted fuzzy
clustering for time series with trend-based information granulation,”
IEEE Transactions on Cybernetics, vol. 54, no. 2, pp. 903–914, 2024.

[18] Z. Yang, S. Jiang, F. Yu, W. Pedrycz, H. Yang, and Y. Hao, “Linear fuzzy
information-granule-based fuzzy c -means algorithm for clustering time
series,” IEEE Transactions on Cybernetics, vol. 53, no. 12, pp. 7622–
7634, 2022.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2024.3466175

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 24,2024 at 00:09:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, 2024 13

[19] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp.
191–203, 1984.

[20] C. Zhu, X. Ma, W. Ding, and J. Zhan, “Long-term time series forecasting
with multi-linear trend fuzzy information granules for LSTM in a
periodic framework,” IEEE Transactions on Fuzzy Systems, vol. 32,
no. 1, pp. 322–336, 2023.

[21] L. Shen, Q. Ma, and S. Li, “End-to-end time series imputation via
residual short paths,” in Proceedings of the 10th Asian Conference on
Machine Learning, 2018, pp. 248–263.

[22] Y. Luo, X. Cai, Y. Zhang, J. Xu, and X. Yuan, “Multivariate time series
imputation with generative adversarial networks,” in Proceedings of the
32nd Annual Conference on Neural Information Processing Systems,
2018, pp. 1603–1614.

[23] J. Kim, D. Tae, and J. Seok, “A survey of missing data imputation using
generative adversarial networks,” in Proceedings of the 9th International
Conference on Artificial Intelligence in Information and Communication,
2020, pp. 454–456.

[24] Y. Luo, Y. Zhang, X. Cai, and X. Yuan, “E2gan: End-to-end generative
adversarial network for multivariate time series imputation,” in Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence,
2019, pp. 3094–3100.

[25] Y. Zhou, S. Wang, T. Wu, L. Feng, W. Wu, J. Luo, X. Zhang, and
N. Yan, “For-backward lstm-based missing data reconstruction for time-
series landsat images,” GIScience & Remote Sensing, vol. 59, no. 1, pp.
410–430, 2022.

[26] Q. Suo, W. Zhong, G. Xun, J. Sun, C. Chen, and A. Zhang, “Glima:
Global and local time series imputation with multi-directional attention
learning,” in Proceedings of the 8th International Conference on Big
Data, 2020, pp. 798–807.
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