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High labor costs and the requirement for significant domain expertise often result in a lack of 
anomaly labels in most time series. Consequently, employing unsupervised methods becomes 
critical for practical industrial applications. However, prevailing reconstruction-based anomaly 
detection algorithms encounter challenges in capturing intricate underlying correlations and 
temporal dependencies in time series. This study introduces an unsupervised anomaly detection 
model called Variational AutoeEncoder with Adversarial Training for Multivariate Time Series 
Anomaly Detection (VAEAT). Its fundamental concept involves adopting a two-phase training 
strategy to improve anomaly detection precision through adversarial reconstruction of raw data. 
In the first phase, the model reconstructs raw data to extract its basic features by training two 
enhanced variational autoencoders (VAEs) that incorporate both the long short-term memory 
(LSTM) network and the attention mechanism in their common encoder. In the second phase, 
the model refines reconstructed data to optimize the reconstruction quality. In this manner, 
this two-phase VAE model effectively captures intricate underlying correlation and temporal 
dependencies. A large number of experiments are conducted to evaluate the performance on 
five publicly available datasets, and experimental results illustrate that VAEAT exhibits robust 
performance and effective anomaly detection capabilities. The source code of the proposed 
VAEAT can be available at https://github .com /Du -Team /VAEAT.

1. Introduction

As the accumulation of a vast amount of time series within enterprises and organizations, time series [1] anomaly detection has 
become a critical technique for identifying exceptional situations [2], predicting future events [3], and maintaining operations [4]. 
In time series data, anomalous events exhibit a clear distinction from normal events along the time axis, as depicted in Fig. 1. The 
objective of anomaly detection [5] is to identify data points that deviate from the expected behavior. These data points potentially 
indicate faults, anomalous events, or other irregular situations [6]. Due to the fact that most time series data present a large number 
and high dimension [7], the data are often difficult to be labeled for this reason [8]. Therefore, studies on multivariate time series 
[9,10] anomaly detection predominantly center on unsupervised approaches [11].
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Fig. 1. Multivariate time series with anomaly points. The shaded area refers to the interval where the anomaly is labeled.

In recent years, advancements in related technologies have resulted in the emergence of numerous unsupervised methods based 
on deep learning [12], including WANEH [13] and DeepLog [14]. Among them, variational autoencoder (VAE)-based methods are 
extensively employed for their strong theory foundation and reliable stability. However, they have limitations, notably in grappling 
with the intricacies learning the underlying data distribution. Researchers propose some solutions to overcome this challenge. An 
intuitive strategy is to use more complex prior distributions, which can effectively capture the intricate patterns and structures in 
the data. For example, Liao et al. [15] use the Gaussian mixture model as a prior for the distribution of multivariate time series. This 
helps capture the complex characteristic and multimodal distribution of time series. Rezende et al. [16] map the simple probability 
distribution (such as the standard normal distribution) to a complex one through a series of asymptotic transformations. This method 
can be used to improve approximate inference in variational inference, making the model better approximate the true posterior 
distribution. However, these methods require prior knowledge or assumptions about the underlying variables. If these assumptions 
differ from the actual data distribution, they could constrain the expressiveness of the model or induce a decline in performance. 
In addition, they frequently ignore dependencies within time series, especially long-term dependencies, which is also an issue that 
needs to be addressed.

For solving the aforementioned problems, a novel unsupervised anomaly detection method for multivariate time series, VAEAT, 
is proposed. The method mainly adopts the architecture of VAE, including a single encoder and two decoders. A two-stage training 
with the idea of adversarial training is adopted, enhancing the capability of extracting complex underlying distributions of raw 
data and effectively mitigating the limitations of VAE. In addition, we use LSTM in the encoder, which enables better access to the 
dependencies between time series. Finally, we solve the problem of forgetting past information during the feature extraction of long 
sequences by introducing an attention mechanism in LSTM.

The main contributions of this paper can be generalized in the following points:

• We propose VAEAT, an approach for unsupervised anomaly detection on multivariate time series. This method demonstrates 
the strong feature extraction and noise resistance for time series data, resulting in improving its capability of distinguishing 
abnormal and normal data.

• We develop an improved variational autoencoder architecture that integrates an LSTM module and an attention mechanism in 
its encoder, and performs data reconstruction using one pair of structurally identical decoders. The proposed structure intends 
to better capture dependencies within time series.

• We use a two-phase training strategy. By introducing different regularization terms for the two decoders, the idea of adversarial 
training is incorporated in the second phase. This strategy helps to discover complex data structures while enhancing the noise 
resistance to the model.

• Experimental outcomes across five different datasets indicate a significant improvement over the previous methods, positioning 
VAEAT as a novel baseline.

The remaining sections in the paper are organized in the following way. Related methods used for anomaly detection on multi-

variate time series are explored in Section 2. The comprehensive summary on the method we propose is given in Section 4. The detail 
presentation on our experiment outcomes is given in Section 5. Finally, Section 6 provides a conclusion encompassing the entirety of 
this paper.

2. Related work

Anomaly detection in time series can be classified into two categories: unsupervised and supervised algorithms [17]. This paper 
focus on the unsupervised scenarios. Unsupervised anomaly detection methods, according to their objectives, are further classified 
as two groups: the forecasting-based and the reconstruction-based methods.

The Forecasting-Based Methods. An fundamental concept of the methods is to employ a prediction algorithm to forecast future 
values for target variables. This is done by comparing predicted values and actual recorded values when new records are available. 
If the residual error surpasses a specific threshold, it is considered as an anomaly. To address the problem that traditional anomaly 
detection methods may not be able to effectively capture complex seasonal features, AD-LTI [18] takes into account multiple seasonal 
patterns in time series data to effectively capture anomalies on different time scales. However, it ignores the fact that datasets are 
often highly imbalanced. To address this problem, Chen et al. [19] propose an anomaly detection method based on classical echo state 
2

network (ESN), called HealthESN. However, the two methods emphasize the dependencies of the time series on time dimensions, but 
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Table 1

Notations and their descriptions used subsequently.

Notations Descriptions

𝑾 𝒇 , 𝑾 𝐶 , 𝑾 𝑖, 𝑾 𝑜 The weight matrices

𝒃𝑓 , 𝒃𝐶 , 𝒃𝑖, 𝒃𝑜 The bias terms

𝑿 A multivariate time series

𝒙𝑡 The data point at time step 𝑡

𝑇 The timestamp length

𝑚 The dimension sizes for data points

𝒚 The test result of each data point of the test data

𝑦𝑡 The test result of a data point at time step 𝑡

𝜺 The minor constancy vector

𝑾 𝑡 The context window at time step 𝑡

𝐾 The context window length

𝑺 𝑡 The anomaly scores

𝒁 The latent variable

𝑾 1′
𝑡
, �̂�

1′

𝑡
The reconstructed data for the first variational autoencoder in the first phase

𝑾 2′
𝑡

The reconstructed data of the second variational autoencoder in the first phase

𝑾 2′′
𝑡
, �̂�

2′′

𝑡
The reconstructed data for the second variational autoencoder in the second phase

𝑒 The training epoch

𝝁𝑍 ,𝝁,𝝈
2
𝑍
,𝝈2 The mean and variance for distributions of latent variables

neglect those on feature dimensions. To address this problem, MTAD-GAT [20] not only treats an individual characteristic for one of 
the time series, but also includes a dual-layer graph attention mechanism.

The Reconstruction-Based Methods. An fundamental concept of the methods is to employ a model to learn patterns in normal 
time series data and subsequently utilize this model to reconstruct newly acquired data. Reconstruction errors are applied to iden-

tify anomalies in cases where reconstituted data deviates significantly from raw data. Among them, VAE-based methods are more 
common. Although VAE has the stable performance, it has the problem of difficulty in terms of its ability to estimate underlying 
distributions of data. To address this problem, OmniAnomaly [21] employs technologies, including random variable concatenation 
and plane normalized flow in order to reveal hidden distributions of data through modeling their robust representations. However, 
it mainly focuses on the relationship of time series on time dimensions while paying less attention towards relationships on fea-

ture dimensions. To solve this problem, MSCRED [22] identifies the state of multi-level systems over a wide range of timescales 
by creating a multi-scale signature matrix. It also uses convolutional encoders for encoding the correlation between features at the 
same time and a specially-designed network for capturing patterns in time. Unlike this method, MEGA [23] integrates the discrete 
wavelet transform in an autoencoder. This integration is used for decomposing data into distinct frequency components before their 
subsequent reconstruction. However, the aforementioned two methods are more sensitive to noise. To solve this problem, Bagel 
[24] uses conditional variational autoencoder combined with time information and dropout layers. In addition to it, RDSMM [25]

includes a new generation model, an inference model and an elaborated specified emission model on the basis of statistical theories. 
Another one addressing the problem of data noise is generative adversarial network (GAN). TMANomaly [26] is made up of two 
same sub-networks that train each other by alternately assuming the roles of reconstructor and discriminator. However, it pays less 
concern for correlations among multivariate time series features. For addressing this problem, AMBi-GAN [27] allows the network 
structure of generators and discriminators to incorporate the attention mechanism on the LSTM networks. However, the model train-

ing is not stable enough due to the own reasons of GAN. With the aim of solving this problem, ALAD [28] employs bidirectional 
GANs for learning reverse features. This ensures the consistency of data space and latent space loops as well as stabilizes the training 
of GAN. Furthermore, some researchers combine VAE with GAN. BeatGAN [29] uses the adversarial training idea to regularize the 
reconstruction error. This addresses the challenge of excessive labeling and data balancing needed for classification, while reducing 
reliance on regularization during reconstruction. DAEMON [30] builds upon BeatGAN and regularizes the latent space variables 
using adversarial generation techniques. However, both of the above methods require the involvement of discriminators, making the 
models more complex.

3. Preparatory work

Before describing the model in detail, we provide an elaborated analysis of several key points mentioned in the model: Variational 
Autoencoder, Long Short-Term Memory Network, and the attention mechanism. A short definitional description is given for the 
notations throughout the paper.

3.1. Notation descriptions
3

In this subsection, we present the notations and their descriptions used subsequently in the paper, as shown in Table 1.
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3.2. Variational autoencoder

The operation of VAE is similar to that of an autoencoder (AE), but it represents latent features for time series not as single values 
but as a range of possible values. D-dimensional input data 𝑾 passes through the encoder to yield a distribution of k-dimensional 
latent feature representations. These representations are sampled to obtain the mean 𝝁 and the variance 𝝈2 of the latent feature 𝒁 . 
Since the sampling process can’t be back-propagated during training, the reparameterization trick is applied to combine them, as 
shown in Eq. (1). After obtaining the latent variables, the decoder is used to generate the reconstructed data 𝑾 ′. Finally, we have 
our objective function:

𝐿𝑜𝑠𝑠 = ‖𝑾 − 𝑉 𝐴𝐸(𝑾 )‖2
𝐹
+

𝑛∑
𝑖=1

𝐾𝐿(𝑁(𝝁,𝝈2)||𝑁(0,1)), (1)

where 𝐾𝐿(⋅ ∥ ⋅) denotes the Kullback-Leibler divergence within two distributions. 𝑁(·, ·) represents a normal distribution. 𝑛 is the 
number of samples. The purpose of 𝐾𝐿(⋅ ∥ ⋅) is to make the output of our encoder as close as possible to a Gaussian distribution 
under the assumption that 𝒁 follows a Gaussian distribution.

3.3. Long short-term memory networks

LSTM is a variant of Recurrent Neural Networks (RNNs) designed specifically for processing and modeling time-series data and 
other data with temporal dependencies. The core components of it include the input gate, the forget gate, the output gate, and the 
cell state.

Forget Gate. To determine how much of the previous cell state information should be forgotten, we calculate it using the current 
input 𝒘𝑡 and the previous time step’s hidden state 𝒉𝑡−1. We pass these through a fully connected layer and apply the sigmoid function 
to obtain the value 𝒇 𝑡 of the forget gate. This value lies between 0 and 1, where 0 means completely forgetting the information, and 
1 means retaining it entirely.

𝒇 𝑡 = 𝑠𝑖𝑔(𝑾 𝑓 ⋅ [𝒉𝑡−1,𝒘𝑡] + 𝒃𝑓 ), (2)

where 𝑾 𝑓 is the weight matrix, 𝒃𝑓 is the bias term, and 𝑠𝑖𝑔(⋅) is the sigmoid function.

Input Gate. LSTM needs to determine which new information should be stored in the memory cell. This consists of two parts: 
one is the input gate, which decides which parts of the memory cell we will update; the other is a tanh layer, which creates a new 
candidate value vector that may be added to the memory cell. The values 𝒊𝑡 for the input gate and the candidate value �̃� 𝑡 are both 
calculated based on the current input and the hidden state from the previous time step. The formula for the input gate is as follows:

�̃� 𝑡 = tanh(𝑾 𝐶 ⋅ [𝒉𝑡−1,𝒘𝑡] + 𝒃𝐶 ), 𝒊𝑡 = 𝑠𝑖𝑔(𝑾 𝑖 ⋅ [𝒉𝑡−1,𝒘𝑡] + 𝒃𝑖), (3)

where 𝑾 𝐶 and 𝑾 𝑖 are the weight matrixes, 𝒃𝐶 and 𝒃𝑖 are the bias terms.

Updating the Memory Cell. The memory cell is updated based on the decisions made by the forget gate and the input gate. We 
multiply the cell state by the value 𝒇 𝑡 of the forget gate, which means we forget a part of the state information. Then we multiply 
the value 𝒊𝑡 of the input gate by the candidate value �̃� 𝑡 and add it to the cell state, representing the addition of some new state 
information.

𝑪 𝑡 = 𝒇 𝑡 ⊙𝑪 𝑡−1 + 𝒊𝑡 ⊙ �̃� 𝑡, (4)

where ⊙ represents the product of the elements in the corresponding positions of the operands on either side of this symbol.

Output gate and hidden state are crucial components in the architecture. The output gate is responsible for determining the 
appropriate output based on the cell state. By passing both the current input and previous time step’s hidden state through a fully 
connected layer, we can obtain the value of the output gate 𝒐𝑡 using the sigmoid function. This value ranges between 0 and 1, where 
0 signifies no output while 1 represents full output. Subsequently, applying the tanh function to the cell state yields a result ranging 
from -1 to 1, which is then multiplied by the output gate value to derive our final hidden state 𝒉𝑡.

𝒐𝑡 = 𝑠𝑖𝑔(𝑾 𝑜 ⋅ [𝒉𝑡−1,𝒘𝑡] + 𝒃𝑜),𝒉𝑡 = 𝒐𝑡 ⊙ tanh(𝑪 𝑡), (5)

where 𝑾 𝑜 is the weight matrix, 𝒃𝑜 is the bias term, and tanh(⋅) is the hyperbolic tangent function.

3.4. Attention mechanism

After the output results of each step of LSTM described above, we impose the attention mechanism so that it can fuse more 
information of earlier time steps. The specific process is as follows:

𝑴 = tanh(𝑯), (6)

𝜶 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝝎𝑇𝑴), (7)

𝑇

4

𝒓 =𝑯𝜶 (8)



Information Sciences 676 (2024) 120852S. He, M. Du, X. Jiang et al.

where 𝑯 denotes the matrix stitched together as the output of each step of LSTM, 𝑴 is the matrix that undergoes the activation func-

tion tanh(⋅), 𝝎 is the weight matrix, 𝜶 is the weight matrix after undergoing 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅), and 𝒓 is the matrix that finally incorporates 
the past information.

4. Method

In this section, we first delve into the motivation and reasons behind the proposed method of the paper. Subsequently, we 
provide a description of some basic issues. Then, we describe the preprocessing of the data. Immediately after that, we elaborate on 
the specifics of the method presented in the paper. Finally, we develop a discussion on anomaly detection.

4.1. Motivation

In this section, we attempt to construct an anomaly detection model based on the VAE framework. VAE is an extension of the 
autoencoder that incorporates the principles of probabilistic modeling. Within the framework, the encoder embeds input data into a 
lower dimensional latent space and samples latent variables from it. Subsequently, the decoder reconstructs input data from variables. 
The basic principles of VAE-based methods are the computation of anomaly scores through the measurement of reconstruction 
errors from raw data to reconstructed data. Specifically, models are trained using normal data. Consequently, it exhibits excellent 
reconstructions for normal data (with low anomaly scores) and poor reconstructions for anomalous data (with high anomaly scores). 
However, if the normal data is very similar to the anomalous data, it can make the anomaly difficult to detect. Two potential solutions 
to address the problem include magnifying the reconstruction error for anomalous data and incorporating a more robust detection 
module or mechanism. Increasing the number of training layers may contribute to amplifying the reconstruction error of anomalous 
data; however, deeper networks may pose challenges in training and stability. Alternatively, using GAN may be a feasible solution 
to improve model detection. The principle of GAN is to train both generators and discriminators through a competitive process, in 
which generators aim to generate real data for deceiving discriminators, and discriminators seek towards accurately distinguishing 
from real data to generated data. However, there are some fatal problems with GAN, such as modal collapse.

Our goal is to increase reconstruction errors on anomalous data and enhance anomaly detection capabilities in the model while 
maintaining model’s simplicities and stabilities. For this purpose, we construct a method named VAEAT, which uses variational 
autoencoders as the main architecture and creates a two-phase training strategy using adversarial training ideas. Our framework 
inherits the training stability inherent in the VAE model. Our proposed training strategy imitates the adversarial training idea of the 
GAN model while circumventing its inherent limitations. These improvements enhance anomaly detection capabilities and increase 
robustness to noise.

4.2. Problem formulation

Multivariate time series 𝑿 =
{
𝒙1, ...,𝒙𝑇

}
having timestamp length 𝑇 is defined [10]. The data point captured in certain time 𝑡 is 

𝒙𝑡, 𝒙𝑡 ∈𝑅𝑚. 𝑚 denotes dimension sizes for data points [31].

For the trained model, we use an independent testing dataset that has the same origin as the training dataset used during training. 
Specifically, we employ a testing time series with a length denoted as �̂� . The overall test result of each data point of the test data is 
𝒚 =

{
𝑦1, ..., 𝑦�̂�

}
. The test result of a data point in a specific time 𝑡 represents 𝑦𝑡 ∈ {0,1}, which is used to indicate whether the point 

is abnormal (1 indicates an anomalous data point).

4.3. Data preprocessing

The data preprocessing phase comprises data standardization. Let us normalize time series 𝑿 in the following way:

𝒙𝑡 ←
𝒙𝑡 −𝑚𝑖𝑛(𝑿)

𝑚𝑎𝑥(𝑿) −𝑚𝑖𝑛(𝑿) + 𝜺
, (9)

where 𝒙𝑡 is the data point, 𝑚𝑖𝑛(𝑿) represents a minimal vector of time series, as well as 𝑚𝑎𝑥(𝑿) represents a maximal vector. 𝜺
represents the minor constancy vector preventing the single sequence from having a single value that causes the denominator of the 
above equation to be 0 and thus not be calculable.

Following standardization, we create a context window of length 𝐾 for each data point 𝒙𝑡 in time 𝑡. This context window enables 
the capture of temporal dependencies in time series as inputs to the model, defined as 𝑾 𝑡 =

{
𝒙𝑡−𝐾+1, ...,𝒙𝑡

}
. Anomaly score 𝑺 𝑡 of 

𝒙𝑡 is computed using 𝑾 𝑡, and then is used to determine whether 𝒙𝑡 is an anomaly [32].

4.4. Unsupervised anomaly detection

VAEAT consists of two variational autoencoders as illustrated by Fig. 2, the first VAE (denoted by 𝑉1) and the second VAE (denoted 
by 𝑉2). Notably, they share a common encoder, Encoder (denoted as 𝐸). The decoders comprise two components: Decoder1 (denoted 
5

by 𝐷1) and Decoder2 (denoted by 𝐷2). The outputs of 𝑉1 and 𝑉2 are:
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Fig. 2. The VAEAT Model. Phase 1: Raw time series data 𝑊 can be encoded in latent variables 𝑍 through a common encoder (incorporating LSTM with an attention 
mechanism). Then, reconstructed data can be produced from respective decoders. Phase 2: Reconstructed data produced from 𝑉1 (in the blue box) can be reintroduced 
as input data into the common encoder, and the encoded latent variable is utilized for generating the final reconstructed data by a decoder in 𝑉2 (in the red box).

𝑉1(𝑾 ) =𝐷1(𝐸(𝑾 )), (10)

𝑉2(𝑾 ) =𝐷2(𝐸(𝑾 )) (11)

Next, we delve into the details. In the first phase, the window data 𝑾 is fed into the encoder, passing through the LSTM network 
and its associated attention mechanism, and after sampling, obtaining the latent variable 𝒁 . Subsequently, the reconstructed data 
𝑉1(𝑾 ) and 𝑉2(𝑾 ), corresponding to our normal window data 𝑊 , are obtained from 𝒁 through Decoder1 and Decoder2 respectively. 
In the second phase, since we refer to the idea of adversarial training, 𝑉2 is regarded as the discriminator, and the reconstructed 
data 𝑉1(𝑾 ) in the first phase is discriminated as the generated data. Similarly, 𝑉1 is treated as the generator. That is, the goal of 𝑉1
is to fool 𝑉2 through generations of reconstructed data, while an objective of 𝑉2 is to learn distinguishing if data is real data 𝑊 or 
reconstructed data produced from 𝑉1. For specific details, please refer to Algorithm 1. 𝑾 1′

𝑡
represents the reconstructed data for the 

first variational autoencoder in the first phase, 𝑾 2′
𝑡

denotes reconstructed data of 𝑉2 in the first phase, as well as 𝑾 2′′
𝑡

represents 
the reconstructed data for the second variational autoencoder in the second phase.

Algorithm 1 Training algorithm.

Input: Normal windows Dataset  =
{
𝑾 1 , ...,𝑾 𝑇

}
, number epochs 𝑁𝑒𝑝𝑜𝑐ℎ

Output: Trained 𝑉1 , 𝑉2
Initialize weights 𝐸, 𝐷1, 𝐷2
𝑒 ← 1
while 𝑒 ≤𝑁𝑒𝑝𝑜𝑐ℎ do

for 𝑡 = 1 to 𝑇 do

𝑾 1′
𝑡
, 𝑾 2′

𝑡
←𝐷1(𝐸(𝑾 𝑡)), 𝐷2(𝐸(𝑾 𝑡)

𝑾 2′′
𝑡

←𝐷2(𝐸(𝑾 1′
𝑡
))

𝐿1 ←
1
𝑒
(‖‖‖𝑾 𝑡 −𝑾 1′

𝑡

‖‖‖
2

𝐹

+
𝑛∑
𝑖=1

𝐾𝐿(𝑁(𝝁𝑍 , 𝝈2
𝑍
)‖𝑁(0, 1)))

+ (1 − 1
𝑒
) ‖‖‖𝑾 𝑡 −𝑾 2′′

𝑡

‖‖‖
2

𝐹

𝐿2 ←
1
𝑒
(‖‖‖𝑾 𝑡 −𝑾 2′

𝑡

‖‖‖
2

𝐹

+
𝑛∑
𝑖=1

𝐾𝐿(𝑁(𝝁𝑍 , 𝝈2
𝑍
)‖𝑁(0, 1)))

− (1 − 1
𝑒
) ‖‖‖𝑾 𝑡 −𝑾 2′′

𝑡

‖‖‖
2

𝐹

𝐸, 𝐷1, 𝐷2 ← update weights using 𝐿1 and 𝐿2

𝑒 ← 𝑒 + 1

Phase 1: Reconstructing Inpution. In the first phase, we input raw data 𝑾 into two variational autoencoders to obtain the 
corresponding reconstructed data. The specific details are as follows: raw data 𝑾 is inputed into the common encoder for compres-

sion, and then the mean and variance distribution of the compression vector is obtained. Subsequently, the latent variable (𝒁) is 
obtained. It is decoded through two decoders for obtaining corresponding reconstructed data. Therefore, our training objectives in 
the first phase are as follows:

‖ ‖2 𝑛∑
2

6

𝐿1 = ‖𝑾 − 𝑉1(𝑾 )‖𝐹 +
𝑖=1

𝐾𝐿(𝑁(𝝁𝑍,𝝈𝑍 )‖𝑁(0,1)) (12)
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𝐿2 = ‖‖𝑾 − 𝑉2(𝑾 )‖‖2𝐹 +
𝑛∑
𝑖=1

𝐾𝐿(𝑁(𝝁𝑍,𝝈2
𝑍
)‖𝑁(0,1)) (13)

where 𝐾𝐿(⋅ ∥ ⋅) denotes the Kullback-Leibler divergence within two distributions. 𝑁(·, ·) represents a normal distribution.

Phase 2: Adversarial training. We use an approach similar to GAN. We use the reconstructed data 𝑉1(𝑾 ) from the first phase 
as input to 𝑉2. The goal is to train 𝑉2 as a discriminator for distinguishing between real data and reconstructed data generated by 
𝑉1, as well as training 𝑉1 as a generator to generate the reconstructed data so that 𝑉2 mistakenly thinks that reconstructed data is 
real data. 𝑉1 aims to have a minimum discrepancy from raw data 𝑊 to the output of 𝑉2 in the second phase, and 𝑉2 aims to have a 
maximum discrepancy between the two. Therefore, our training objectives in the second phase are as follows:

min
𝑉1

max
𝑉2

‖‖𝑾 − 𝑉2(𝑉1(𝑾 ))‖‖2𝐹 (14)

The above loss function can be converted to the following losses:

𝐿1 = +‖‖𝑾 − 𝑉2(𝑉1(𝑾 ))‖‖2𝐹 (15)

𝐿2 = −‖‖𝑾 − 𝑉2(𝑉1(𝑾 ))‖‖2𝐹 (16)

Aggregating the Training Objective. Given that we have separately obtained the reconstruction phase loss and the adversarial 
training phase loss, we can now use the final loss function to summarize the losses of these two phases:

𝐿1 =
1
𝑒
(‖‖𝑾 − 𝑉1(𝑾 )‖‖2𝐹

+
𝑛∑
𝑖=1

𝐾𝐿(𝑁(𝝁𝑍,𝝈2
𝑍
)‖𝑁(0,1)))

+ (1 − 1
𝑒
)‖‖𝑾 − 𝑉2(𝑉1(𝑾 ))‖‖2𝐹

(17)

𝐿2 =
1
𝑒
(‖‖𝑾 − 𝑉2(𝑾 )‖‖2𝐹

+
𝑛∑
𝑖=1

𝐾𝐿(𝑁(𝝁𝑍,𝝈2
𝑍
)‖𝑁(0,1)))

− (1 − 1
𝑒
)‖‖𝑾 − 𝑉2(𝑉1(𝑾 ))‖‖2𝐹

(18)

where 𝑒 denotes a training epoch, 𝝁𝑍 and 𝝈2
𝑍

represent the mean and variance for distributions of latent variables.

4.5. Anomaly detection

Following model training, the trained model is used for detecting the test data containing anomalies, as shown in Algorithm 2. 
�̂�

1′
𝑡

represents the reconstructed data for the first variational autoencoder in the first phase, and �̂� 2′′
𝑡

represents the reconstructed 
data for the second variational autoencoder in the second phase. Anomaly scores are specified in the following way:

𝑠 = 1
2
‖‖‖�̂� − 𝑉1(�̂� )‖‖‖

2

𝐹
+ 1

2
‖‖‖�̂� − 𝑉2(�̂� )‖‖‖

2

𝐹
(19)

where �̂� represents the window data at the current timestamp, and is not observed. Data points are classified to be abnormal when 
scores are larger than the threshold 𝜆 that we set, otherwise they are considered to be normal [33].

Algorithm 2 Testing algorithm.

Input: Test windows Dataset ̂ =
{
�̂� 1, ..., �̂�

′
𝑇

}
, threshold 𝜆

Output: Labels y: {𝑦1, ..., 𝑦𝑇 ′

}
for 𝑡 = 1 to 𝑇 ′ do

�̂�
1′

𝑡
←𝐷1(𝐸(�̂� 𝑡))

�̂�
2′′

𝑡
←𝐷2(𝐸(�̂� 1′

𝑡
))

𝑠 ← 1
2

‖‖‖‖�̂� 𝑡 − �̂�
1′

𝑡

‖‖‖‖
2

𝐹

+ 1
2

‖‖‖‖�̂� 𝑡 − �̂�
2′′

𝑡

‖‖‖‖
2

𝐹

if 𝑠 ≥ 𝜆 then
𝑦𝑡 ← 1

else
𝑦𝑡 ← 0
7
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Table 2

Benchmark Datasets. (%) represents the percent of abnormal data points.

Data set

name

Sub set

number

Dimension

number

Training set

size

Testing set

size

Anomaly

ratio (%)

SMD 28 38 708405 748420 4.16

MSL 57 55 58317 73729 10.72

SMAP 55 25 135183 427617 13.13

SWaT 1 51 475200 449919 10.72

PSM 1 25 132481 87841 27.8

5. Experiments and results

The algorithm is implemented, with the use of PyTorch (V2.0.0) and Python (3.8.16). A machine running the Windows 11 
operating system is used for all experiments, equipped with an NVIDIA GeForce RTX 3060 Laptop GPU and 6 GB of memory. In 
the experiment, we basically summarize the default hyper-parameters used. Specifically, the batch size of the training, validation 
and testing datasets is uniformly set to 128. The weights of the network model are optimized by the Adam optimizer and the initial 
learning rate is set to 10−4. In the training phase, the total number of epochs is executed for 250. The number of early stopping is set 
to 5 in order to be able to terminate the experiment when the improvement is no longer significant.

5.1. Setup

In our experiments, five datasets are used: Server Machine Dataset (SMD) [21], Soil Moisture Active Passive satellite (SMAP), 
Mars Science Laboratory Rover (MSL) [34], Secure Water Treatment (SWaT) [35], and Pooled Server Metrics (PSM) [36]. Detailed 
features of datasets are summarized in Table 2.

• SMD is a new dataset collected and publicly released by a major Internet company. The dataset covers a 5-week time span 
and contains data from 28 server machines, with a 1-minute time interval between each neighboring data. Each machine is 
monitored by 33 metrics. The SMD dataset is divided into two equal-sized subsets: the first half is used as a training set (without 
labels), while the second half is used as a test set (with labels).

• SMAP and MSL are the two public datasets of the real-world dataset series, both labeled by NASA experts. These datasets 
provide us with important information about soil moisture and Mars science experiments. The SMAP dataset contains data from 
55 entities, while the MSL dataset contains data from 27 entities. Each entity is monitored using either 25 or 55 indicators.

• SWaT is an invaluable resource for the study of industrial control systems and cyber security. It provides an environment that 
simulates a water treatment system with various types of data and simulated attacks. The dataset is from a single entity and 
each entity monitors 51 metrics.

• PSM is a public dataset from eBay server machines. The dataset contains data from one entity, each monitoring 25 metrics.

In addition, we use the precision (P), recall (R), F1 score (F1), and F1∗ score (F1∗) [37] to assess the performance of our method 
and baselines:

𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(20)

𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(21)

𝐹1 = 2 ⋅ 𝑃 ⋅𝑅
𝑃 +𝑅

(22)

𝐹1∗ = 2 ⋅ 𝑃 ⋅ �̄�
𝑃 + �̄�

(23)

where TP is the True Positives, FP is the False Positives, and FN is the False negatives. 𝑃 and �̄� represent the average precision and 
recall, respectively.

5.2. Overall performance

In practical production scenarios, anomalies seldom occur in isolation but rather persist for a period of time, forming continuous 
abnormal segments. Therefore, our method does not focus on how well a single point in time operates, but on data points over a 
period of time. In view of such issues, the point adjustment approach [37] is used for optimizing the model. When an anomaly can 
be detected within a time period, that period is an anomaly segment, and the points in it are identified as anomalies.

To validate the overall performance of our method, baselines are used for comparisons: VAE [38], LSTM [39], LSTM-VAE [40], 
USAD [37], and BeatGAN [29]. Since not all detection methods employ an identical threshold determination strategy, for the sake of 
unification, all methods compared in this section adopt the same strategy for each possible threshold in the testing phase of the model. 
8

Table 3 presents detailed performance outcomes achieved by all methods for datasets. Our method outperforms all other methods 
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Table 3

Performance Comparison. Precision (P), Recall (R), F1 scores and F1* scores on the public datasets.

Methods SMD MSL

P R F1 F1* P R F1 F1*

VAE 0.8703 0.7488 0.7763 0.8050 0.8785 0.9897 0.9096 0.9308

LSTM 0.8852 0.8682 0.8596 0.8766 0.8500 0.9999 0.8931 0.9189

LSTM-VAE 0.8950 0.8764 0.8707 0.8856 0.8147 0.9805 0.8555 0.8899

USAD 0.8124 0.7438 0.7493 0.7766 0.8852 0.9400 0.8866 0.9118

BeatGAN 0.8817 0.8408 0.8525 0.8608 0.8951 0.9743 0.9199 0.9330

Ours 0.9518 0.9654 0.9571 0.9586 0.9522 0.9999 0.9735 0.9755

Methods SMAP SWaT

P R F1 F1* P R F1 F1*

VAE 0.7288 0.9821 0.7730 0.8367 0.9494 0.7604 0.8444 0.8444

LSTM 0.7240 0.9922 0.7723 0.8371 0.4387 0.5426 0.5912 0.5912

LSTM-VAE 0.7468 0.9880 0.7917 0.8506 0.9526 0.7190 0.8195 0.8195

USAD 0.7144 0.9938 0.7678 0.8312 0.9196 0.8110 0.8619 0.8619

BeatGAN 0.7318 0.9510 0.7757 0.8271 0.5644 0.8310 0.6723 0.6723

Ours 0.8943 0.9951 0.9296 0.9420 0.9363 0.9350 0.9357 0.9357

Methods PSM Total

P R F1 F1* P R F1 F1*

VAE 0.8483 0.8319 0.8400 0.8400 0.8550 0.8625 0.8286 0.8513

LSTM 0.9597 0.8971 0.8780 0.8780 0.7715 0.8600 0.7988 0.8203

LSTM-VAE 0.9209 0.9193 0.9201 0.9201 0.8660 0.8966 0.8515 0.8731

USAD 0.9775 0.8130 0.8877 0.8877 0.8618 0.8603 0.8306 0.8538

BeatGAN 0.9111 0.8193 0.8627 0.8627 0.7968 0.8832 0.8166 0.8311

Ours 0.9578 0.9674 0.9626 0.9626 0.9384 0.9725 0.9517 0.9548

across all datasets (SMAP, MSL, SMD, SWaT, and PSM), surpassing the best-performing benchmark F1 scores by 17.4%, 5.8%, 9.9%, 
8.5%, and 11.7% respectively. This is because although VAE reconstructs raw data better, it does not extract the temporal features 
of raw data, which VAEAT does well. Although LSTM-VAE compensates for this problem, it ignores the inherent distribution of time 
series data and the noise in raw data, whereas VAEAT’s two-phase training strategy effectively addresses these concerns. Thus, our 
method demonstrates substantial enhancement and excellent performance.

5.3. Visualization of anomaly scores

In order to get a clearer understanding of various methods’ performance, we visually analyze their normalized anomaly scores. 
This operation is performed on the SMD dataset. Fig. 3a-3f represent the point plots of anomaly scores for VAE, LSTM, LSTM-VAE, 
USAD, BeatGAN, and VAEAT, respectively. In the above six plots, x-axis denotes the time axis, y-axis denotes normalized anomaly 
scores, blue dots denote anomaly scores for each point, red dotted lines represent the thresholds used for determining if each time 
point is abnormal or not, and the shaded area indicates that the current time point is an anomaly. As can be seen from Fig. 3a, 
due to the lack of extracted temporal features, the VAE model suffers from many normal points being misidentified as anomalies, 
leading to a decrease in the precision and recall. From Fig. 3b, it can be seen that although LSTM makes a significant increase in the 
precision and recall due to the extraction of temporal features, it is slightly deficient in detecting some anomalies very close with 
normal (anomaly scores of anomalies are very close to the threshold), i.e., it is susceptible to noise. As can be seen from Fig. 3c, 
LSTM-VAE still has shortcomings, and the precision and recall rate are still low. In order to better address the noise effect, it is clear 
from Fig. 3d and Fig. 3e in which USAD and BeatGAN perform slightly better after applying the adversarial idea, but its precision 
and recall rate are still low due to the lack of temporal feature extraction. As can be seen from Fig. 3f, our method can better identify 
the anomalous data that is very similar to the normal.

5.4. Effect of parameters

Effects of various parameters for our method are evaluated through experiments.

Window size. Experiments on this parameter are performed on the SMAP dataset. Fig. 4a illustrates the results of experiments 
with four different window sizes. When the window size changes from small to large, the F1 scores show a tendency to rise and 
then fall. As the window size gets smaller, lower F1 scores are obtained. This is because small windows do not represent the context 
information of window data well. As the window size gets larger, lower F1 scores are obtained. The reason for this is that the larger 
the window that can be observed, the harder it is to detect small segment abnormalities incorporated into the long segment data. 
However, the F1 scores of VAEAT are still much higher than those of baselines, indicating VAEAT still maintains high performances 
when dealing with long sequences.

The dimension size 𝑚 of the latent variable. Experiments on this parameter are performed on the SMAP and PSM datasets. 
9

From Fig. 4b and Fig. 4c, it can be seen that as m increases, the F1 scores behave differently on the two datasets. From Fig. 4b, it can 



Information Sciences 676 (2024) 120852S. He, M. Du, X. Jiang et al.

Fig. 3. The visualization of anomaly scores of different methods on the SMD dataset. 1) Blue dots: anomaly scores for each time point. 2) Red dotted lines: thresholds 
for determining whether each time point is an anomaly. 3) Shaded areas: current points in time are anomalies.

be seen that F1 scores fluctuate more with increasing m on the SMAP dataset. From Fig. 4c, it can be seen that the F1 scores remain 
relatively stable on the PSM dataset as m increases. We speculate that the reason for this difference is the subset size of the dataset. 
After the data from the SMAP dataset is reallocated to the subset, the amount of subset data may not be sufficient to adequately learn 
the sequence features. As a result, the redundant information in the latent variables has a more pronounced effect on the final results, 
leading to greater fluctuations in the F1 score curves. Whereas, the PSM dataset has enough data to learn the sequence features, and 
the effect of redundant information on the final results is negligible, making the F1 score curve remain stable.

5.5. Noise experiment

In this subsection, we examine the impact of noise on each method. We employ two datasets, MSL and SMAP, to conduct our 
experiments.

From results achieved on the MSL dataset, illustrated by Fig. 5a, it is observed that other methods experience a sharp decrease 
in F1 scores after being affected by noise, with an average drop between 4% and 9%. This indicates that they are highly affected by 
noise. In contrast, our method exhibits robust performance against noise on the MSL dataset, without noticeable degradation.

As depicted in Fig. 5b, the F1 scores of the comparison methods exhibit slight fluctuations at the initial stages of introducing 
noise into the SMAP dataset. As noise levels rise, their performance demonstrates an overarching decline. In contrast, our method 
maintains its performance well on the SMAP dataset after being affected by noise, which is almost unaffected except for a slight drop 
10

at the beginning.
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Fig. 4. Effect of the window size and the dimension size of the latent variable on the precision (P), recall (R) and F1 score. (a) The values of the window size on the 
SMAP dataset are 5, 10, 15 and 20. Y-axis indicates values of the corresponding evaluation indexes. As the window size gets larger, the F1 score tends to decrease. 
(b) The values of the dimension size of the latent variable on the SMAP dataset are 5, 10, 20, 50, 100, 150, 200, 250, 300, 350 and 400. Y-axis indicates values of 
corresponding evaluation indexes. The F1 scores fluctuate more as the dimension size of the latent variable becomes larger. (c) The values of the dimension size of 
the latent variable on the PSM dataset are 5, 10, 20, 50, 100, 150, 200, 250, 300, 350 and 400. Y-axis indicates values of corresponding evaluation indexes. The F1 
scores are relatively smooth as the dimension size of the latent variable becomes larger.

Fig. 5c shows the effect more clearly. The x-axis represents various methods on the MSL and SMAP datasets, and the y-axis 
represents the percentage decline in performance from no noise to a noise ratio of 30. The decline in the F1 score of VAEAT on the 
MSL dataset is very slight. Although the F1 score of our method decreases by 3.8% on the SMAP dataset, the decline is the smallest 
compared to other methods. In general, our method performs well under the influence of noise and shows strong resistance to noise.

5.6. Ablation study

Ablation experiments are implemented for assessing effects on anomaly detection effectiveness of critical modules in the method. 
We design three different variants by removing and substituting three key components. We compare our method with three variants: 
VAEAT-VAE, which converts the variational autoencoder into a basic autoencoder, VAEAT-LSTMA, which applies only the variational 
autoencoder framework, and VAEAT-A, which removes the attention mechanism from LSTM. Details are given in Table 4.

Effect of VAE: The results for the VAEAT-VAE variant show an average performance degradation of 13.7% for the three datasets 
when VAE is replaced by the basic AE. We argue that the latent spatial diversity has a significant influence over the model’s 
performance.

Effect of LSTM: The results from the VAEAT-LSTMA variant show an average performance degradation of 13.6% across the three 
datasets when LSTM is removed. We argue that using VAE without LSTM impairs capabilities of the model for capturing temporal 
features of the data.

Effect of adding the attention mechanism on top of LSTM: The results for the VAEAT-A variant show that an average performance 
degradation of 14.7% across the three datasets when the attention mechanism attached to LSTM is removed. We argue that using 
LSTM without an attention mechanism impairs the model’s ability to capture long sequence features.

6. Conclusions

We propose a novel unsupervised anomaly detection method for multivariate time series, named VAEAT, which uses VAEs as 
the main architecture and creates a two-phase training strategy using the adversarial training idea. This method not only solves the 
problem that VAE fails to adequately learn the underlying data distribution, but also enhances its noise resistance. Experimental 
results on five public datasets indicate that VAEAT is adept at detecting anomalies in time series efficiently. Compared to all base-
11

line methods, our method demonstrates superior anomaly detection performance and increased robustness against noise. However, 
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Fig. 5. The effect of noise on each method. (a) On the MSL dataset. X-axis indicates injected noise ratios of 0, 10, 20 and 30. Y-axis denotes F1 scores for methods with 
corresponding injected noise ratios. (b) On the SMAP dataset. X-axis indicates injected noise ratios of 0, 10, 20, and 30. Y-axis denotes F1 scores for methods with 
corresponding injected noise ratios. (c) X-axis represents various methods on the MSL and SMAP datasets, and y-axis denotes the percentage decline in performance 
from no noise to a noise ratio of 30.

Table 4

The Comparison of Variants. Marking √ indicates that this part is used.

Methods MSL

LSTM VAE Attention P R F1

VAEAT-VAE
√ √

0.8899 0.9999 0.9226

VAEAT-LSTMA
√

0.8883 0.9999 0.9232

VAEAT-A
√ √

0.8849 0.9910 0.9155

Ours
√ √ √

0.9522 0.9999 0.9735

Methods SMAP

LSTM VAE Attention P R F1

VAEAT-VAE
√ √

0.7292 0.9917 0.7768

VAEAT-LSTMA
√

0.7294 0.9873 0.7780

VAEAT-A
√ √

0.7520 0.9873 0.8016

Ours
√ √ √

0.8943 0.9951 0.9296

Methods SMD

LSTM VAE Attention P R F1

VAEAT-VAE
√ √

0.8572 0.8337 0.8236

VAEAT-LSTMA
√

0.8332 0.8245 0.8146

VAEAT-A
√ √

0.8303 0.7828 0.7838

Ours
√ √ √

0.9518 0.9654 0.9571

this paper does not thoroughly explore the relationship between time series attributes for detecting overall abnormalities through 
anomalies at a single attribute. For this reason, inter-attribute relationships will be emphasized in future work.
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