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Density Peaks Clustering (DPC) is a classic density-based clustering algorithm that has 
been successfully applied in various areas. However, it assigns samples based on their 
nearest neighbors with higher density which may lead to an error propagation problem. 
Besides, it can not detect fringe and overlapping samples. To handle these defects, we 
improve the density measurement of DPC to make it more adaptive to different shapes 
and varying densities. Furthermore, we extend DPC to three-way clustering which means 
a sample in the positive region certainly belongs to the cluster, a sample in the boundary 
region belongs to the cluster partially and a sample in the negative region certainly does 
not belong to the cluster. In this paper, we propose a three-way clustering method called 
TW-RDPC. It mainly consists of three steps: (1) Identify cluster centers and assign other 
samples based on relative Cauchy kernel density to get initial clusters. (2) Detect potential 
boundary samples through boundary detection graph. (3) Determine whether potential 
boundary samples belong to multiple clusters based on the subordinate relationship to 
their k nearest neighbors. In order to validate TW-RDPC, we compare it to 7 algorithms 
on 10 synthetic datasets and 8 real-world datasets. Experimental results indicate that TW-
RDPC is competitive with the compared 7 algorithms.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Clustering is a well-known unsupervised learning technique that groups similar samples to the same clusters and dis-
similar samples to different clusters [1]. The most outstanding advantage of clustering is that potential similar patterns 
can be found without any prior information. It has been widely used in various areas, including text mining [2], image 
segmentation [3], bioinformatics [4], community detections [5] and so on.

DPC is a classic density-based clustering algorithm and has obtained extensive attention [6,7], but it is limited by the 
error propagation problem. Many methods have been proposed to overcome the defect. For example, SNN-DPC [8] applied 
shared-nearest-neighbor to improve the assignment process. DPC-DLP [9] adopted a graph-based label propagation method 
to assign labels to remaining samples based on identified cluster centers. 3W-DPET [10] deals with the problem by extending 
DPC to three-way clustering. Meanwhile, three-way clustering can also identify fringe samples and overlapping samples. 
However, 3W-DPET may excessively assign samples to boundary regions which causes more uncertainty. Our algorithm not 
only solves the error propagation problem but also reduces the uncertainty of the clustering results. Besides, BPEC [11]
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Fig. 1. Two types of clustering results.

extends DPC to evidential clustering [12], which utilizes belief functions to form credal partitions, from which hard, fuzzy, 
possibilistic, and rough partitions can be derived.

As three-way clustering originates from three-way decisions, we will first introduce the two research fields. Then, we 
introduce the motivations and main steps of our algorithm.

1.1. Three-way decisions and three-way clustering

The three-way decision is a new theory of study proposed by Yao for complex problem analyzing and solving [13–15]. 
It is an extension of the binary-decision methods. Based on the idea of triadic thinking [16], a three-way decision divides a 
universal set into three disjoint regions and makes three types of decisions accordingly to achieve the expected results. The 
original goal of this theory is to provide a reasonable semantic explanation for decision-theoretic rough sets [14]. Based on 
the loss function values being constant or changing over time, the research of three-way decisions can be divided into static 
three-way decisions [17] and dynamic three-way decisions [18]. This paradigm of triadic thinking for complex problem 
solving and information processing fosters subsequent research topics including three-way classification [19,20], three-way 
attribute reduction [21], three-way cognitive computing [22], three-way conflict analysis [23], three-way clustering [24,25]
etc.

In light of triadic thinking of three-way decisions, three-way clustering represents a cluster by an interval set (i.e. a pair 
of nested sets split by lower bound and upper bound respectively). Therefore, a cluster is made up of three regions: positive 
region (the samples in P O S belong to the cluster certainly), boundary region (the samples in BN D may be part of the 
cluster and may potentially belong to other clusters), negative region (the samples in N EG do not belong to the cluster 
certainly). Fig. 1 [26] illustrate simple examples of two-way and three-way cluster representations.

In Fig. 1 (a), C1 and C2 are two clusters obtained by two-way clustering. It means a sample can only belong to one cluster. 
Thus, some boundary information (e.g. x1, x2,..., x6) can not be fully reflected. To solve the problem, as shown in Fig. 1 (b), 
clusters are restructured into positive regions (P O S(C1), P O S(C2)) and boundary regions (BN D(C1), BN D(C2)), the samples 
in P O S certainly belong to that cluster, while the samples in BN D hold a relatively loose connection to clusters (e.g. x3, x4, 
x5, x6). Moreover, the samples may belong to more than one cluster (e.g. x1, x2). Therefore, the divide-and-conquer strategy 
is effective in getting a more reasonable structure.

1.2. Motivation and contribution

Detecting clusters of different shapes and varying densities is a major task in density-based clustering methods. DPC is 
an effective density-based method promising in many applications, but it also faces some dilemmas:

• DPC’s results are found to be sensitive to density measurement and large density differences across clusters tend to 
result in improper cluster centers and label error propagation problem [10].

• It is improper to assign some boundary samples to only one strict cluster when the sample shows nearly the same 
similarities to many different clusters.

• Although 3W-DPET also aims to alleviate the label error propagation problem, it tends to overly assign samples to 
boundary regions which may cause excessive uncertainty. Our algorithm not only tackles the label error propagation 
problem but also reduces the uncertainty.

In order to tackle the above mentioned defects, we improve DPC through density measurement and extend the clustering 
results to the three-way paradigm. The main steps can be summarized as follows:

• Firstly, we adopt Cauchy kernel density with dynamic bandwidth to get local density. Then we get the relative local 
density by dividing the local density by the maximum local density in the samples’ k nearest neighbors. In this way, 
we can better adapt to different data distributions, so as to get more reasonable cluster centers and mitigate label error 
propagation.

• Secondly, based on the idea that boundary samples tend to have low local density and low relative density, we propose 
a boundary detection graph to get potential boundary samples.
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• Finally, we determine whether a potential boundary sample is a fringe or overlapping sample based on the subordinate 
relationship to its k nearest neighbors. If its k nearest neighbors’ labels are the same, the sample belongs to that one 
cluster. If its k nearest neighbors’ labels are different, the sample belongs to clusters with these labels.

This method gets the density information and relative information of the samples in a more detailed way. The boundary 
detection graph utilizes the density measurements to identify potential boundary samples. Furthermore, the three-way 
processing procedure can also be applied to other density-based clustering methods as long as proper density estimation 
and thresholds are defined.

The rest of this paper is organized as follows: We review the studies related to our work in Section 2. Section 3 briefly 
introduces the DPC algorithm and three-way clustering representation. The details of TW-RDPC are introduced in Section 4. 
Section 5 presents the experimental results on datasets and sensitivity analysis. Finally, we summarize our work and future 
research in Section 6.

2. Related work

To relax the constraint of hard clustering, soft clustering algorithms have been applied successfully. The fuzzy C-
means (FCM) [27] which assumes a cluster is represented by a fuzzy set that reflects a gradually changing boundary 
is the most widely used. Another effective tool for uncertain data analysis is the rough K-means algorithm (RKM) [28]
which uses interval sets to represent clusters with vague and imprecise boundaries. To further enrich this field, Yu 
[29] proposes an evaluation-based three-way clustering model stemming from three-way decisions: Considering a pair 
of thresholds (α, β)α≥β and an evaluation function ϕ(x), Ci is a cluster, U is a universal set, P O S(Ci)={xεU |ϕ(x) > α}, 
BN D(Ci)={xεU |β ≤ ϕ(x) ≤ α}, N EG(Ci)={xεU |ϕ(x) < β}. To further determine the two thresholds for overlapping clusters, 
Afridi et al. [30] define the between-variance and within-variance for the three regions. Ulteriorly, they take the maximiza-
tion of the ratio of the former to the latter as the optimization objective to determine the thresholds. In case of missing 
data [31], they creatively apply game-theoretic rough sets (GTRS) for the automatic determination of thresholds. Yu [29]
also proposes a three-way clustering algorithm for incomplete data by improved partial Euclidean distance modeling.

Three-way clustering has also been applied to process different types of data in different backgrounds. For incremental 
data, Yu, Zhang and Wang [32] put forward a two-stage three-way clustering algorithm. During the online stage, initial 
samples are clustered and a tree is constructed. During the off-line stage, the neighbor information is used to update the 
tree graph to get the three-way clusters. For multivariate time series, López-Oriona et al. [33] propose quantile-based fuzzy 
C-means based on the so-called metric, noise and trimmed approaches. For Multi-view data clustering, Yu et al. [34,35]
propose two three-way clustering methods via decomposing similarity matrices and low-rank matrices separately. Khan et 
al. [36] handle this situation by low-rank sparse representation. For ensemble clustering, Yu et al. [37] propose a three-
way cluster ensemble approach for large-scale data based on spark. Jiang and Zhao [38] propose a three-way clustering 
ensemble approach based on the shadowed set. S-M3WCE [39] is another shadowed set based multi-granular three-way 
ensemble clustering approach via possibilistic C-means. Wang et al. [40] propose a three-way ensemble clustering algorithm 
for incomplete data based on the imputation result. Meanwhile, novelty detection [41] and outlier detection [42] methods 
are also extended by the three-way clustering approach.

Three-way clustering has also been used to extend existing two-way clustering algorithms. Inspired by the ideas of ero-
sion and dilation from mathematical morphology, Wang and Yao [26] propose a framework of contraction-and-expansion 
that extends two-way clustering to three-way clustering. Specifically, based on K-means [43], TWKM [44] uses perturbation 
analysis to separate the core regions from the supports. A-3WCM [45] uses cognition of distance stability to adaptively iden-
tify the cut-off threshold and weight equation based on K-means. Another three-way K-means algorithm [46] is proposed 
to improve the weight and the sample assignment strategy. Based on DBSCAN [47], 3W-DBSCAN [48] improves similarity 
measurement with a multi-dimensional distance scaling method to identify varying densities. Based on DPC [49], TWC-GS 
[50] uses a gravitational search strategy to adjust the thresholds automatically so that three regions can be obtained. 3W-
DPET [10] utilizes evidence theory to overcome DPC’s label error propagation problem. Inspired by ROBP [51]and sequential 
three-way decisions, Du et al. propose multistep three-way clustering [52] by progressive erosion strategy. BS3 [53] and 
BS3WC [54] convert hard clusters to images and define cluster blur and cluster sharp operations to get three-way clusters.

3. Preliminaries

3.1. Density peaks clustering

The DPC algorithm is mainly based on two assumptions: (1) Cluster centers are surrounded by nearby samples with low 
local densities. (2) The distance between cluster centers is far. Thus, for a sample xi , we need to compute two values: local 
density ρ and the nearest distance to samples with higher density δ. The local density of xi is defined as:

ρi =
n∑

χ(dij − dc), χ(x) =
{

1, x < 0

0, x ≥ 0
(1)
j=1
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where n is the number of total samples, dij is the distance between xi and x j , dc is the cut-off distance. It is obvious that 
ρi is equal to the number of samples distributed in the dc radius of xi .

Another way to compute ρi is through the Gaussian kernel:

ρi =
n∑

j=1

exp(− dij

dc
2
), (2)

where dc is used to adjust the weight degradation. An appropriate percentile is adopted to capture the only parameter dc . 
δi is measured by calculating the minimum distance between sample xi and other samples with higher density:

δi =
⎧⎨
⎩

min
j:ρi>ρ j

di j . i f ∃ j s.t. ρi > ρ j

max
j

di j, otherwise.
(3)

Based on ρi and δi , a decision graph is plotted to detect cluster centers with both relatively high ρi and δi . Another 
frequently used approach to identify cluster centers is to compute γi = ρi × δi , and select the samples with top n maximum 
γi as cluster centers where n is the number of clusters. Then, all the unlabeled samples are assigned in line with their 
nearest neighbors. The chains are terminated by cluster centers.

3.2. Three-way clustering representation

In this section, we elucidate the symbolic representation of three-way clustering. Suppose U = {x1, x2,..., xl} is a finite 
non-empty universe of samples. In traditional clustering, C = {C1, C2,..., Cn} is a family of n clusters. While in three-way 
representation, an interval set is used to illustrate the clustering results: Ci = (C, C) = (P O S(Ci), P O S(Ci ) ∪ BN D(Ci )), 
where C is the lower bound of Ci and C is the upper bound of Ci . The three regions in one cluster have four properties:

(i) P O S(Ci) ∪ BN D(Ci) ∪ N EG(Ci) = U ,
(ii) P O S(Ci) ∩ BN D(Ci) = φ,
(iii) P O S(Ci) ∩ N EG(Ci) = φ,
(iv) BN D(Ci) ∩ N EG(Ci) = φ.

The four properties mean that the three adjacent regions do not intersect with each other.
In addition, there are three properties between clusters:

(i) P O S(Ci) �= φ, i = 1, 2, ..., n,
(ii) P O S(Ci) ∩ P O S(C j) = φ, i �= j,

(iii)
⋃k

i=1 (P O S(Ci) ∪ BN D(Ci)) = U .

The three properties between clusters indicate that all positive regions are non-empty. Moreover, any two positive regions 
do not intersect with each other.

4. Proposed TW-RDPC algorithm

In this section, we improve DPC’s density measurement through relative Cauchy kernel density, and then we propose a 
boundary detection graph to detect potential boundary samples. Finally, based on the k nearest neighbors, we determine 
whether a potential boundary sample is an overlapping sample. The three-way strategy is also applicable to other density-
based clustering methods under proper density measurement.

4.1. Improved DPC algorithm

Definition 1 (k Nearest Neighbors). The k nearest neighbors of sample xi are defined as a set of samples x satisfy: d(xi, x) ≤ d(xi, x j), 
where d(xi, x j) is the distance between xi and its k-th neighbor. i.e., K N N(xi) = {xi ∈ D|d(xi, x) ≤ d(xi, x j)}, where D is the dataset. 
Especially, we use K N Nk(xi) to represent the k-th nearest neighbor of xi . Examples of K N N are shown in Fig. 2.

When k = 3, the 3N N are the 3 green samples inside the circle with the radius r1; when k = 7, the 7N N are the 3 green 
samples and 4 blue samples inside the circle with the radius r2.

Definition 2 (Reverse k Nearest Neighbors). The reverse k nearest neighbors of sample xi are defined as a set of samples x that include 
xi as one of its K N N, i.e., R K N N(xi) = {x ∈ D|xi ∈ K N N(x)}. An example of R K N N is shown in Fig. 3 [55].
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Fig. 2. Examples of K N N with k = 3 and k = 7. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Example of R K N N with k=2.

The example dataset X contains 4 samples each associated with a circle covering its 2 nearest neighbors. For example, 
the 2N N of x4 are x2 and x3, which are in the circle centered at x4. Given another sample q the result of R2N N(q) includes 
the “owners” (i.e. centers) of the circles that contain q. So, R2N N(q) = {x3, x4}.

Note that x ∈ K N N(q) does not necessarily imply x ∈ R K N N(q), and vice versa. For instance, 2N N(q) = {x1, x3} but x1
does not belong to R2N N(q), because 2N N(q) does not include q. On the other hand, although x4 ∈ R2N N(q), x4 is not in 
2N N(q).

Definition 3 (Cauchy kernel estimation). Compared with the Gaussian distribution, the Cauchy distribution has longer tails. Mean-
while, it is more robust to non-uniformly-distributed data [51] and high-dimensional data [56] than the Gaussian kernel so we adopt 
Cauchy kernel estimation which is defined as:

ρi =
∑

x j∈R K N N(xi)

(
||xi − x j||22

h2
+ 1)−1, (4)

where h is the bandwidth. We adopt a dynamic method to get h automatically in Definition 4.

Definition 4 (Variable bandwidth kernel density). A single hard bandwidth can not adapt to varying density distribution. To capture the 
different bandwidths of different regions, we utilize the R K N N information to dynamically get h [57], where h = ||x j − K N Nk(x j)||2 . 
So the kernel density is defined as:

ρi =
∑

x j∈R K N N(xi)

(
||xi − x j||22

||x j − K N Nk(x j)||22
+ 1)−1. (5)

Definition 5 (Relative Cauchy kernel density). Inspired by LGD [58], to further identify the relative information, we divide the Cauchy 
density of xi by the maximum Cauchy density in its K N N. The relative Cauchy kernel density is defined as:

ρ ′
i = ρi

max{ρ j|x j ∈ K N N(xi)} , x j ∈ R K N N(xi). (6)

After the local density is defined, the remaining steps are the same as DPC: we detect cluster centers and assign other 
samples based on their nearest neighbors with higher relative Cauchy kernel density, until a cluster center is found. The 
following Algorithm 1 is a summary of improved DPC:
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Fig. 4. Example of boundary detection graph with 3 clusters.

Algorithm 1: Improved DPC algorithm.
Input: A dataset D and the parameter k
Output: Initial assigned cluster indices

1 Calculate distance matrix by Euclidean distance [59].
2 Calculate ρ ′

i for sample xi according to Formula (6).
3 Calculate δi for sample xi according to Formula (3).
4 Plot the decision graph and select cluster centers.
5 Assign each remaining sample to the nearest cluster center.

4.2. Three-way process

After all the samples are initially labeled, we start to detect potential boundary samples. A boundary sample is far from 
or relatively far from other samples in the cluster. Thus, it is obvious that it has both low Cauchy kernel density ρ and 
relative Cauchy kernel density ρ ′ . Firstly, we construct a boundary detection graph to detect potential boundary samples. To 
determine thresholds, the percentile of the total data number is adopted. Through our experiments, the quartile [60,61] of 
ρ and ρ ′ is well to detect potential boundary samples. An example of a boundary detection graph is shown in Fig. 4.

Different colors represent the initial clusters obtained by improved DPC. Solid points represent samples in positive re-
gions and hollow points represent potential boundary samples.

After potential boundary samples are obtained, we further identify whether the potential boundary samples belong to 
positive regions or boundary regions based on their K N N . If the K N N of a potential boundary sample all belong to one 
cluster, then the potential boundary sample is assigned to the positive region of that cluster. If the K N N of a potential 
boundary sample belongs to different clusters, then the potential boundary samples are assigned to boundary regions of 
these clusters. An example of the three-way process is shown in Fig. 5.

Based on the above two strategies, the following Algorithm 2 is a summary of the three-way process, where n is the 
number of clusters and k is the number of nearest neighbors:

Algorithm 2: The three-way process.
Input: Initial cluster labels and the parameter k
Output: {P O S(C1), P O S(C2), ..., P O S(Cn)}
and {BN D(C1), BN D(C2), ..., BN D(Cn)}

1 Calculate ρi and ρ ′
i by Formula(5) and Formula(6).

2 Calculate Q 1 and Q ′
1 through Quartile.

3 if ρi < Q 1 and ρ ′
i < Q ′

1 then
4 if {∀ xi | K N N(xi) ∈ Cm} then
5 P O S(Cm) ⇐ xi m ∈ 1, 2, ..., n.
6 else
7 {∃ xi | K N N(xi) ∈ Cm}
8 BN D(Cm) ⇐ xi m ∈ 1, 2, ..., n.
9 end

10 else
11 Keep xi in initial clusters Cr : P O S(Cr) ⇐ xi . r ∈ 1, 2, ..., n.
12 end
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Fig. 5. Example of three-way process based on K N N with k=3.

Table 1
Datasets used in experiments.

Synthetic datasets #Instances #Features #Classes
D1 87 2 3
D2 85 2 4
Zelink6 238 2 3
Compound 399 2 6
R15 600 2 15
Aggregation 788 2 7
Triangle2 1000 2 4
4C 1250 2 4
G2 1500 2 3
S1 5000 2 15

Real-world datasets #Instances #Features #Classes

Iris 150 4 3
Parkinsons 195 22 2
Seeds 210 7 3
Thyroid 215 5 3
Liver 345 6 2
Pima 768 8 2
Biodeg 1055 41 2
Unbalance 6500 2 8

4.3. Complexity analysis

In this section, we analyze the time complexity of TW-RDPC. Suppose that the total number of samples is n and k is 
the number of nearest neighbors. Firstly we analyze the time complexity of the improved DPC algorithm (Algorithm 1). For 
line 1, it takes O (n2) to compute the pairwise distance matrix. Then for line 2, we need to search for the K N N of each 
sample to get ρ and ρ ′ each of them takes O (kn). For line 3, like traditional DPC, it takes O (n2) to calculate δ. Thus the 
magnitude of the overall time complexity of the improved DPC algorithm is O (n2). Next, we analyze the time complexity of 
the Three-way process (Algorithm 2). After ρ and ρ ′ are obtained in the improved DPC algorithm, we can get Q 1 and Q ′

1. 
Then we need to detect potential boundary samples by the judging conditions in line 3 which takes O (n). Assuming the 
number of potential boundary samples is m, we need to search K N N to identify whether they belong to positive regions 
or boundary regions which takes O (km). Finally, we assign all samples to their corresponding regions which takes O (n). As 
m 
 n the magnitude of the overall time complexity of the Three-way process is O (n). Based on the above two parts, as 
k 
 n, the overall time complexity of TW-RDPC is O (n2).

5. Experiments and results

5.1. Experiment setup

In this section, eighteen datasets are used to evaluate the performance of TW-RDPC, including ten synthetic datasets and 
eight real-world datasets. For the convenience of visualization, the synthetic datasets are all two-dimensional. In order to 
prove the applicability of the algorithm, the real-world datasets are varying dimensions. All the synthetic datasets are from 
benchmark clustering datasets1 and all the real-world datasets are from UCI Machine Learning Repository.2 The detailed 
information of these datasets is shown in Table 1.

We compare the performance of TW-RDPC with seven other clustering algorithms, including CE3-kmeans [26], 3W-
DPET [10], M3W [52] DPC [49], DPC-KNN [59], FCM [27] and RCM [28]. Among them, CE3-kmeans, 3W-DPET and M3W 

1 https://github .com /milaan9 /Clustering -Datasets.
2 http://archive .ics .uci .edu /ml /index .php.
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Table 2
Configuration of parameters in different algorithms.

Description Candidates

TW-RDPC The number of nearest neighbors k ∈ [1,2, ...,20]
3W-DPET
CE3-kmeans
DPC-KNN
M3W The number of nearest neighbors k ∈ [1,2, ...,30]

The erosion levels L ∈ [1,2, ...,12]
DPC The cut-off distance in Eq. (2) dc ∈ [0.01,0.02, ...,1.00]
FCM The fuzzy index m ∈ [1.0,1.5, ...,5.0]
RKM The approximate weight wu ∈ [0.1,0.2, ...,0.5]

The ratio threshold ε ∈ [0.1,0.2, ...,0.5]

Table 3
A contingency table.

�

C
c1 c2 · · · cs sums

ω1 n11 n12 · · · n1n a1

ω2 n21 n22 · · · n2n a2

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

ωr nr1 nr2 · · · nrn ar

sums b1 b2 · · · bs

are state-of-the-art three-way clustering algorithms, DPC and DPC-KNN are DPC related algorithms, FCM and RKM are two 
representative soft clustering algorithms. All of them are widely used and successfully applied in different backgrounds.

All of these algorithms need to know the number of clusters in advance except M3W. The number of clusters is set 
as the true number of classes in the datasets. Additionally, these algorithms need to configure their parameters separately. 
TW-RDPC, 3W-DPET, DPC-KNN and CE3-kmeans all need a parameter k which describes the number of k nearest neighbors. 
We choose k by setting it from 1 to 25 with step 1. Then we determine k with the best performance. Especially, because 
of randomly selected initial center samples, CE3-kmeans get different results each running time. So we run it ten times 
and compute the average value as the final results. The number of k nearest neighbors and the number of erosion levels 
L are two parameters in M3W. We configure k from 1 to 30 with step 1 and L from 1 to 12 by increasing 1. DPC has one 
parameter dc , we set dc ranging from 0.01 to 1 with step 0.01 and determine dc with the best performance. The maximum 
iteration of FCM is set as 100 by default. So, FCM needs one parameter m called fuzzy index. The value of m varies from 1.0 
to 5.0 with step 0.5. Two parameters of RKM are wu and ε , which respectively represent the approximate weight and the 
ratio threshold. We configure wu from 0.1 to 0.5 with step 0.1 and ε from 0.1 to 0.5 by increasing 0.1. The configuration is 
summarized in Table 2. In the experiments, we use min-max normalization [62] to process all datasets.

5.2. Evaluation measures

Clustering problem is a kind of partition problem. Suppose � = {ω1, ω2, ..., ωr} are the clustering results by the clustering 
algorithm, C = {c1, c2, ..., cn} are the true clusters.

1. Purity (Pur): The general idea of purity is to divide the number of correct samples by the total number of samples, so 
it is also called the accuracy [63] of clustering. It is defined as:

P ur = (�, C) = 1

N

r∑
i=1

max
j

|ωi ∩ c j| (7)

where N is the total number of samples, ωi represents all samples in the ith cluster, c j represents the true sample in the 
jth cluster. The purity range is [0,1], a higher purity means better clustering results.

2. Adjusted Rand Index (ARI): To mitigate the impact of random labels on RI evaluation results, ARI [64] is proposed. A 
contingency table (Table 3) is adopted to compute ARI:

AR I =
∑

i
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j

(nij
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j
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)]
/
(n

2

) (8)

where nij represents the number of intersecting samples of ωi and c j .
The range of ARI is [−1,1]. The larger the ARI, the better the clustering results.
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Table 4
Performance comparison for 7 clustering algorithms on 10 synthetic datasets.

Algorithm Purity ARI NMI Params Purity ARI NMI Params

D1 (3 classes) D2 (4 classes)
TW-RDPC 1.0000 1.0000 1.0000 k = 8 1.0000 1.0000 1.0000 k = 5
CE3-kmeans 0.9034 0.8639 0.9092 k = 12 1.0000 1.0000 1.0000 k = 6
3W-DPET 1.0000 1.0000 1.0000 k = 10 1.0000 1.0000 1.0000 k = 13
M3W 1.0000 1.0000 1.0000 k = 10 L = 2 1.0000 1.0000 1.0000 k = 18 L = 2
DPC 1.0000 1.0000 1.0000 dc = 0.16 0.9882 0.9679 0.9655 dc = 0.02
DPC-KNN 1.0000 1.0000 1.0000 k = 6 0.9882 0.9679 0.9655 k = 5
FCM 0.9885 0.9610 0.9515 m = 1.5 0.9882 0.9679 0.9655 m = 1.0
RKM 0.9655 0.9053 0.8766 wu = 0.2 ε = 0.2 0.9882 0.9679 0.9655 wu = 0.2 ε = 0.2

Zelink6 (3 classes) Compound (6 classes)
TW-RDPC 0.8824 0.7327 0.7812 k = 12 0.8997 0.8547 0.8716 k = 7
CE3-kmeans 0.8517 0.6795 0.6765 k = 14 0.6935 0.6220 0.7414 k = 9
3W-DPET 0.8361 0.6572 0.6557 k = 15 0.8797 0.8473 0.8599 k = 5
M3W 0.8319 0.7299 0.6942 k = 9 L = 4 0.8722 0.8358 0.8789 k = 17 L = 5
DPC 0.8529 0.6877 0.6729 dc = 0.14 0.8296 0.8327 0.8566 dc = 0.28
DPC-KNN 0.8403 0.6715 0.6600 k = 2 0.8700 0.8090 0.8520 k = 2
FCM 0.8277 0.6506 0.6437 m = 2.5 0.6584 0.4124 0.5321 m = 2.5
RKM 0.8403 0.6782 0.6642 wu = 0.2 ε = 0.2 0.7920 0.7767 0.7935 wu = 0.2 ε = 0.2

R15 (15 classes) Aggregation (7 classes)
TW-RDPC 1.0000 1.0000 1.0000 k = 15 0.9987 0.9978 0.9957 k = 6
CE3-kmeans 0.9362 0.9324 0.9740 k = 18 0.8251 0.7239 0.8401 k = 5
3W-DPET 1.0000 1.0000 1.0000 k = 15 1.0000 1.0000 1.0000 k = 7
M3W 0.9967 0.9928 0.9942 k = 15 L = 5 0.9962 0.9910 0.9862 k = 24 L = 5
DPC 0.9967 0.9928 0.9942 dc = 0.02 0.9975 0.9956 0.9942 dc = 0.09
DPC-KNN 0.9967 0.9928 0.9942 k = 5 0.9962 0.9935 0.9896 k = 4
FCM 0.9050 0.8771 0.9303 m = 2.0 0.7893 0.6791 0.8234 m = 1
RKM 0.8883 0.8408 0.9282 wu = 0.1 ε = 0.2 0.7817 0.7962 0.7767 wu = 0.1 ε = 0.1

Triangle2 (4 classes) 4C (4 classes)
TW-RDPC 0.9990 0.9967 0.9946 k = 16 0.7536 0.4752 0.6498 k = 19
CE3-kmeans 0.9973 0.9920 0.9845 k = 15 0.6425 0.3429 0.5035 k = 11
3W-DPET 0.9980 0.9933 0.9904 k = 10 0.6456 0.4385 0.6381 k = 9
M3W 0.9970 0.9900 0.9865 k = 24 L = 6 0.8464 0.7088 0.7645 k = 30 L = 5
DPC 0.9970 0.9900 0.9850 dc = 0.15 0.7416 0.5448 0.6834 dc = 0.07
DPC-KNN 0.9960 0.9867 0.9812 k = 2 0.7312 0.4408 0.6184 k = 10
FCM 0.9640 0.8990 0.8835 m = 1.5 0.6584 0.4124 0.5321 m = 1.5
RKM 0.8220 0.6506 0.7037 wu = 0.2 ε = 0.2 0.6928 0.3799 0.5336 wu = 0.2 ε = 0.4

G2 (3 classes) S1 (15 classes)
TW-RDPC 0.9973 0.9920 0.9845 k = 18 0.9973 0.9920 0.9845 k = 18
CE3-kmeans 0.9478 0.9355 0.9481 k = 14 0.9476 0.9429 0.9754 k = 2
3W-DPET 0.9907 0.9724 0.9561 k = 4 0.9960 0.9915 0.9923 k = 5
M3W 0.9940 0.9831 0.9695 k = 30 L = 5 0.9630 0.9564 0.9634 k = 15 L = 3
DPC 0.9947 0.9841 0.9724 dc = 0.07 0.9952 0.9897 0.9896 dc = 0.03
DPC-KNN 0.9907 0.9724 0.9561 k = 2 0.9952 0.9897 0.9896 k = 8
FCM 0.9953 0.9861 0.9747 m = 1 0.8322 0.8183 0.9153 m = 1.5
RKM 0.9867 0.9608 0.9449 wu = 0.1 ε = 0.2 0.9188 0.9118 0.9610 wu = 0.1 ε = 0.2

3. Normalized Mutual Information (NMI): NMI [65] is widely used to measure the similarity of two clusters. The entropy 
of clusters is:

H(C) = −
k∑

i=1

pilogpi . where pi = |ci |
N

. (9)

Then we compute the mutual information between predicted clusters and true clusters:

M I(�, C) =
r∑

i=1

s∑
j=1

pijlog(
pij

pi × p j
), where pij = |ωi ∩ c j|

N
. (10)

Based on the entropy and MI of clusters, we can get NMI:

N M I(�, C) = M I(�, C)

max(H(�),H(C))
(11)

The range of NMI is [0,1]. The larger the NMI, the more similar the clusters.
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Fig. 6. Clustering results on D1.

5.3. Experimental results on synthetic data sets

Table 4 shows the clustering results on 10 synthetic datasets, as well as the best parameter settings. The best perfor-
mances for each dataset are highlighted in bold. Through the results, we can conclude that TW-RDPC achieves the best 
or relatively better performance in each dataset. Furthermore, the clustering results of TW-RDPC on D1, D2 and R15 are 
completely correct.

We visualize D1, D2, Compound, Aggregation, Triangle2 and 4C as examples to illustrate the superiority of our algorithm, 
which are shown in Fig. 6-11. In these results, (a) is the original distribution, (b-i) are results corresponding to each al-
gorithm. Samples in positive regions are represented by solid dots and hollow-shaped dots mean boundary samples. The 
samples represented by two or more shapes are overlapping samples. Samples with the same color belong to one cluster.

D1 dataset is made up of a dense circle cluster, a relatively sparse circle cluster and a sparse wave area. The clustering 
results of D1 are shown in Fig. 6. TW-RDPC, 3W-DPET, M3W, DPC and DPC-KNN perfectly cluster this dataset. FCM achieves 
the second-best performance due to wrongly clustering two samples in the sparse region C1. RKM and CE3-kmeans get 
relatively worse results because they tend to wrongly cluster samples in the fringe region to other clusters with relatively 
higher densities.

D2 dataset is made up of four nonadjacent dense regions and each of them is attached with a sample. An additional 
sample that is difficult to identify lies in the center of the four parts. The clustering results of D2 are shown in Fig. 7. 
TW-RDPC, CE3-kmeans and 3W-DPET can correctly cluster the sample lies in the center by considering it as the boundary 
overlapping sample. It is quite reasonable because its distance from the four dense regions is relatively far and holds a 
relatively low density. M3W also correctly clusters the sample in the center and assigns the samples to the corresponding 
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Fig. 7. Clustering results on D2.

positive region. Instead, DPC, DPC-KNN, FCM and RKM fail to correctly cluster the sample lies in the center thus having a 
slightly inferior performance.

Compound dataset consists of two adjacent circle regions, a nested concentric circle-like structure and a dense irregular 
shape surrounded by sparse areas. The clustering results on Compound are shown in Fig. 8. TW-RDPC, CE3-kmeans, 3W-
DPET, M3W, DPC-KNN and FCM can correctly distinguish the adjacent two circles. Furthermore, TW-RDPC tackles sparse 
adjacent fringe areas with overlapping representation for careful management. 3W-DPET, M3W and DPC can better identify 
the nested concentric circle-like structure, but DPC wrongly considers two adjacent circles as one cluster and thus has a 
lower performance. 3W-DPET considers too many samples as boundary samples leading to a lack of information in positive 
regions. This problem of 3W-DPET may be unacceptable in some scenarios. For the rest area, the dense irregular shape is 
primarily and correctly identified by TW-RDPC, M3W, DPC, DPC-KNN and RKM thus the most information is kept. Integrating 
the above three parts, TW-RDPC obtains the most information in the whole dataset.

Aggregation dataset consists of one crescent-shaped cluster, four circle clusters with different sizes and two connected 
elliptical clusters. The clustering results of Aggregation are shown in Fig. 9. 3W-DPET gets the best performance, but some 
samples that should belong to the positive regions are excessively divided into the boundary regions. The results of TW-
RDPC, DPC and DPC-KNN are nearly perfectly right except fail to correctly cluster the samples that connect the two elliptical 
clusters. M3W also achieves great results except fails to detect a few connection samples between C5 and C6. The results 
of CE3-kmeans, FCM and RKM show that the error assignment problem between clusters is more serious. They excessively 
split a cluster or partially merge clusters to nearby clusters because of their inferior of being unable to detect clusters with 
arbitrary shapes.
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Table 5
Performance comparison for 7 clustering algorithms on 8 real-world datasets.

Algorithm Purity ARI NMI Params Purity ARI NMI Params

Iris (3 classes) Parkinsons (2 classes)
TW-RDPC 0.9867 0.9603 0.9403 k = 13 0.8564 0.4171 0.3450 k = 5
CE3-kmeans 0.8867 0.7150 0.7315 k = 9 0.6395 0.0634 0.2427 k = 11
3W-DPET 0.9733 0.9222 0.9144 k = 10 0.8103 0.3104 0.1699 k = 3
M3W 0.9264 0.8032 0.9315 k = 13 L = 8 0.8267 0.7877 0.7977 k = 11 L = 7
DPC 0.9600 0.8857 0.8623 dc = 0.17 0.8513 0.3910 0.3652 dc = 0.06
DPC-KNN 0.8513 0.3910 0.6352 k = 1 0.8513 0.3910 0.6352 k = 1
FCM 0.9067 0.7560 0.7550 m = 5 0.6872 0.1347 0.2480 m = 1.5
RKM 0.9467 0.8515 0.8622 wu = 0.2 ε = 0.2 0.7385 0.1924 0.0983 wu = 0.1 ε = 0.1

Seeds (3 classes) Thyroid (3 classes)
TW-RDPC 0.9476 0.8518 0.8365 k = 18 0.9628 0.8732 0.8212 k = 16
CE3-kmeans 0.8924 0.7087 0.6771 k = 4 0.9256 0.7482 0.6982 k = 17
3W-DPET 0.9333 0.8148 0.7945 k = 4 0.7674 0.3321 0.4048 k = 4
M3W 0.9190 0.7796 0.7644 k = 21 L = 10 0.8419 0.5996 0.5440 k = 10 L = 12
DPC 0.9048 0.7455 0.7424 dc = 0.06 0.7628 0.2197 0.2849 dc = 0.6
DPC-KNN 0.9048 0.7430 0.7077 k = 3 0.7814 0.2713 0.3172 k = 1
FCM 0.8905 0.7056 0.6793 m = 4 0.8884 0.6283 0.6072 m = 1.5
RKM 0.9143 0.7653 0.7249 wu = 0.2 ε = 0.3 0.9349 0.7818 0.7037 wu = 0.1 ε = 0.3

Liver (2 classes) Pima (2 classes)
TW-RDPC 0.6116 0.0332 0.0272 k = 12 0.7370 0.1897 0.1337 k = 14
CE3-kmeans 0.5748 0.0103 0.0038 k = 18 0.6823 0.1230 0.0658 k = 9
3W-DPET 0.5710 −0.0041 0.0071 k = 4 0.6484 0.0131 0.0042 k = 7
M3W 0.5710 −0.0001 0.0004 k = 20 L = 3 0.6458 0.0221 0.0157 k = 13 L = 5
DPC 0.5768 0.0121 0.0043 dc = 0.08 0.6732 0.1005 0.0464 dc = 0.01
DPC-KNN 0.5710 −0.0046 0.0259 k = 6 0.6510 0.0119 0.0052 k = 3
FCM 0.5159 −0.0081 0.0031 m = 1.5 0.6680 0.1094 0.0687 m = 2.5
RKM 0.5913 0.0302 0.0197 wu = 0.5 ε = 0.5 0.7279 0.1905 0.1103 wu = 0.2 ε = 0.2

Biodeg (2 classes) Unbalances (8 classes)
TW-RDPC 0.6569 −0.0055 0.0157 k = 4 1.0000 1.0000 1.0000 k = 8
CE3-kmeans 0.5789 −0.0396 0.0503 k = 14 0.9480 0.9629 0.9760 k = 4
3W-DPET 0.6322 −0.0233 0.0222 k = 8 1.0000 1.0000 1.0000 k = 5
M3W 0.5033 −0.0590 0.0823 k = 30 L = 6 0.9829 0.9989 0.9759 k = 30 L = 3
DPC 0.6398 −0.0184 0.0196 dc = 0.03 0.9845 0.9986 0.9919 dc = 0.02
DPC-KNN 0.6398 −0.0184 0.0196 k = 2 1.0000 1.0000 1.0000 k = 6
FCM 0.6199 0.0456 0.1367 m = 4.5 0.7275 0.7971 0.8145 m = 1.0
RKM 0.7242 0.2000 0.1615 wu = 0.2 ε = 0.2 0.9202 0.9194 0.8896 wu = 0.1 ε = 0.1

Triangle2 dataset consists of four Gaussian distributed clusters with varying variance. The clustering results of Triangles 
are shown in Fig. 10. The samples in the fringe regions are incorrectly clustered to different extents. TW-RDPC can correctly 
cluster samples in the boundary and overlapping samples to the greatest extent, followed by 3W-DPET, CE3-kmeans and 
M3W. DPC and DPC-KNN also get relatively great results. However, FCM does not perform well at the intersection regions. 
RKM gets the worst performance. It even wrongly clusters one whole cluster and unreasonably overly split the cluster at 
the lower left corner.

4C dataset consists of two adjacent dense circle-like regions, a dense linear region and a spare irregular region. The 
clustering results are shown in Fig. 11. All these algorithms can detect the two adjacent dense circle-like regions except 
CE3-kmeans. Meanwhile, All these algorithms can detect the spare irregular region except FCM. To the dense linear region, 
M3W correctly detects nearly two-thirds of this region. However, TW-RDPC, DPC and DPC-KNN can only correctly detect 
nearly half of this region. So, M3W achieves the best results and TW-RDPC achieves the second-best results.

In conclusion, the advantages of TW-RDPC are summarized as: Firstly, compared with 3W-DPET, it keeps as much infor-
mation as possible in positive regions which enhances its usability. Secondly, compared with CE3-kmeans, FCM and RKM, 
it is more able to detect clusters with arbitrary shapes and varying densities and outputs stable results. Thirdly, compared 
with DPC, DPC-KNN, FCM and RKM, it tackles adjacent and overlapping regions more meticulously by three-way representa-
tion. To the best of our knowledge, TW-RDPC is the only three-way clustering algorithm that can represent an overlapping 
sample that belongs to one positive region of a cluster and belongs to boundary regions of other clusters at the same time. 
This representation is more reasonable in some cases for reflecting different degrees of subordination.

5.4. Experimental results on real-world data sets

Table 5 shows the clustering results on 8 real-world datasets, together with the best parameter settings. The best perfor-
mances for each dataset are highlighted in bold. It is obvious that TW-RDPC gets the best or relatively better results than 
other algorithms in all datasets except that its performance on Biodeg is slightly inferior to RKM. But compared with RKM, 
TW-RDPC outputs unique certain results and needs fewer parameters. While RKM will output different results each running 
time because of different random initial cluster centers. The results of TW-RDPC on Iris, Seeds, Thyroid and Unbalance are 
completely or nearly completely correct.
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Fig. 8. Clustering results on Compound.

5.5. Detailed comparison with 3W-DPET

A similar approach with the name of 3W-DPET is also aimed at the error propagation problem. In this section, we will 
compare our algorithm with 3W-DPET and explain the advantage of our algorithm in detail.

For example, the clustering results on Aggregation and Triangle2 obtained by the two algorithms are shown in Fig. 12.
Solid points represent samples in positive regions, which means they belong to the clusters. Other samples represented 

by hollow shapes or * or × are in boundary regions, which means they may (or may not) belong to the clusters. Different 
colors represent different clusters.

Intuitively, in Fig. 12 (a) and Fig. 12 (c), 3W-DPET only assigns a few samples to positive regions (marked with red 
dashed lines). There still exists a large number of boundary samples that need deferral decisions. In real scenes, this means 
more background information is needed to mine a large number of uncertain samples. This problem of 3W-DPET commonly 
exists in other datasets. While in Fig. 12 (b) and Fig. 12 (d), most samples are assigned to positive regions. So, our algorithm 
keeps most certain information and only a few boundary samples are needed to be further determined.

Meanwhile, the two algorithms use two different ways to represent overlapping samples (marked with the green dashed 
line). In Fig. 12 (a) and Fig. 12 (c), the overlapping samples are all boundary samples, which is hard to reflect the different 
subordination to different clusters. While in Fig. 12 (b) and Fig. 12 (d), an overlapping sample may be assigned to the 
positive region of one cluster and be assigned to the boundary region of another cluster. The benefit of this representation 
is that it can reflect different levels of subordination.
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Fig. 9. Clustering results on Aggregation.

5.6. Sensitivity analysis

In order to validate the thresholds in our boundary detection graph, we conduct sensitivity analysis on 5 datasets. Please 
note that the threshold of ρ and the threshold of ρ ′ are the same, for the sake of convenience. Because the two thresholds 
are all used to partition the datasets by percentage. Further, ρ ′ is more tending to measure local density compared with ρ . 
We evaluate Purity, ARI and NMI (see Figs. 13–15) and observe whether the results of the three evaluations are stable. The 
thresholds range from 20% to 30% by step 1%.

Quartile achieves 4 best Purity on the 5 datasets. Especially, on the Parkinsons dataset, the purity is 0.8564, which is 
relatively outstanding. When using the quartile on Aggregation dataset, the purity is 0.9987, which is quite close to the 
best Purity 1.0000. Meanwhile, on Thyroid dataset, although the thresholds change, the Purity remains unchanged, keeping 
0.8824.

Quartile achieves 3 best ARI on the 5 datasets. Especially on the Parkinsons dataset, ARI is 0.4171, which is larger than 
the ARI values corresponding to other thresholds. Although on Zelink6 and Aggregation datasets, the ARI is slightly lower 
when choosing quartile, the overall value of ARI is stable.

Quartile achieves 4 best NMI on the 5 datasets. When choosing quartile, NMI is relatively outstanding on Seeds, Zelink6 
and Thyroid datasets. Meanwhile, on Aggregation dataset, the NMI is 0.9957, which is quite close to the best NMI 1.0000.

In general, Purity, ARI and NMI are very stable when the thresholds change between 20% and 30%, and the quartile 
achieves the best or relatively better results. So the quartile thresholds are reliable.
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Fig. 10. Clustering results on Triangle2.

6. Conclusion

In this paper, we propose a three-way clustering method based on DPC and boundary detection graph called TW-RDPC. 
One contribution of TW-RDPC is that it is more adapted to varying density distribution and different shapes by improved 
density measurement. Another contribution of TW-RDPC is that it extends DPC to a three-way paradigm which is consistent 
with human cognitive thinking. The algorithm mainly includes three steps: In the first step, the proposed relative Cauchy 
kernel density is adopted to improve DPC’s density estimation. In the second step, we create a unique boundary detection 
graph based on quartile threshold to identify potential boundary samples. In the third step, the K N N method is applied to 
assign potential boundary samples to corresponding regions. Through experiments, we compare our algorithm to 7 cluster-
ing algorithms on 10 synthetic and 8 real-world datasets to validate our algorithm. The evaluations on Purity, ARI and NMI 
prove our algorithm achieves satisfactory performance.

In future work, to begin with, we intend to extend the boundary detection graph to other density-based clustering 
algorithms and find more appropriate density measurement strategies. Furthermore, instead of using the quartile to get 
thresholds in the boundary detection graph, we will explore dynamic methods to automatically identify thresholds based 
on relative data distribution. Moreover, we will improve the three-way process to better handle boundary regions. Based on 
these steps, we can develop a general framework for extending traditional density-based clustering algorithms to three-way 
clustering methods.

Moreover, evidential clustering is a rising general framework that may extend other clustering approaches, including 
hard clustering and also many other soft clustering approaches like fuzzy clustering, rough clustering, etc. Especially, when 
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Fig. 11. Clustering results on 4C.

specific conditions are satisfied, a three-way clustering corresponding to a unique extended credal partition, and vice versa. 
So, we will pay more attention to exploring the mutual support between the two highly related fields.
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Fig. 12. Comparison between 3W-DPET and TW-RDPC.

Fig. 13. Sensitivity analysis on Purity.

Fig. 14. Sensitivity analysis on ARI.
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Fig. 15. Sensitivity analysis on NMI.
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