
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Efficient Online Stream Clustering Based on Fast
Peeling of Boundary Micro-Cluster

Jiarui Sun , Mingjing Du , Member, IEEE, Chen Sun, and Yongquan Dong

Abstract— A growing number of applications generate stream-
ing data, making data stream mining a popular research topic.
Classification-based streaming algorithms require pre-training on
labeled data. Manually labeling a large number of samples in the
data stream is impractical and cost-prohibitive. Stream clustering
algorithms rely on unsupervised learning. They have been widely
studied for their ability to effectively analyze high-speed data
streams without prior knowledge. Stream clustering plays a key
role in data stream mining. Currently, most data stream cluster-
ing algorithms adopt the online–offline framework. In the online
stage, micro-clusters are maintained, and in the offline stage,
they are clustered using an algorithm similar to density-based
spatial clustering of applications with noise (DBSCAN). When
data streams have clusters with varying densities and ambiguous
boundaries, traditional data stream clustering algorithms may
be less effective. To overcome the above limitations, this article
proposes a fully online stream clustering algorithm called fast
boundary peeling stream clustering (FBPStream). First, FBP-
Stream defines a decay-based kernel density estimation (KDE).
It can discover clusters with varying densities and identify the
evolving trend of streams well. Then, FBPStream implements
an efficient boundary micro-cluster peeling technique to identify
the potential core micro-clusters. Finally, FBPStream employs
a parallel clustering strategy to effectively cluster core and
boundary micro-clusters. The proposed algorithm is compared
with ten popular algorithms on 15 data streams. Experimental
results show that FBPStream is competitive with the other ten
popular algorithms.

Index Terms— Boundary peeling, data stream, density-based
clustering, online clustering.

NOMENCLATURE

Notation Definition
X = {x1, x2, . . . , xn} Data stream.
n Number of data points in X .
d Dimensionality of data points in X .
s Seed point of a micro-cluster, see

Definition 2.
r Radius of micro-clusters.
MF Micro-cluster feature vector, see

Definition 1.

Manuscript received 12 June 2023; revised 20 November 2023 and
3 February 2024; accepted 15 March 2024. This work was supported in part by
the National Natural Science Foundation of China under Grant 62006104 and
Grant 61872168 and in part by the Natural Science Foundation of Jiangsu
Higher Education Institutions under Grant 20KJB520012. (Corresponding
author: Mingjing Du.)

The authors are with the School of Computer Science and Technology,
Jiangsu Normal University, Xuzhou 221116, China (e-mail: sunjr@jsnu.
edu.cn; dumj@jsnu.edu.cn; 3020200309@jsnu.edu.cn; tomdyq@163.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNNLS.2024.3382033, provided by the authors.

Digital Object Identifier 10.1109/TNNLS.2024.3382033

λ Decay factor.
β Weight threshold factor, see (7).
k Number of nearest neighbors.
ω Level of peeling.
m Number of intermediate macro-

clusters.
K Number of result clusters.
W (xi , t) Weight of xi at t , see (1).
W (mc, t) Weight of mc at t , see (3)–(5).
DKD(mc, t) Decay-based kernel density of

mc at t , see Definition 3.
V core Set of core micro-clusters.
V border Set of boundary micro-clusters.
Rep(mc, t) Representative of mc at t , see

Definition 4.
Sm = {C1, C2, . . . , Cm} Set of intermediate macro-

clusters.
SC = {C1, C2, . . . , C K } Set of result clusters.

I. INTRODUCTION

OWING to the rapid development of the Internet and the
Internet of Things (IoT), an immense volume of data,

often termed as data streams, is continuously produced at near
real-time pace. These data streams originate from a diverse
range of sources such as social media, sensors, and financial
transactions. Extracting valuable information from continuous
data streams in real time is crucial for forecasting future
events and making timely decisions [1], [2], [3]. Clustering
is a well-suited approach for real-time data stream processing,
because it requires less a priori information and no labeled
instances [4], [5], [6].

Existing data stream clustering algorithms either adopt
the fully online framework or the two-stage (online-offline)
framework [7], [8], [9]. Most algorithms use the latter [10].
For a two-stage algorithm, the system receives the data and
summarizes it into micro-clusters or grid cells in the online
stage. In the offline stage, the micro-clusters (grid cells) are
viewed as pseudo-points. They are reclustered or merged
according to some traditional clustering algorithm (sometimes
with slight modifications) to form the final clusters. Clustering
algorithms commonly used in data stream scenarios include
k-means, density-based spatial clustering of applications with
noise (DBSCAN) [11], grid-based algorithms, etc. Although
the two-stage framework is widely used, it has some inherent
limitations: 1) the two-stage algorithms cannot accurately cap-
ture the drifting features [12] in the data stream because they

2162-237X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid-org-s.xidian.yitlink.com:443/0009-0004-0604-4677
https://orcid-org-s.xidian.yitlink.com:443/0000-0002-7701-9004
https://orcid-org-s.xidian.yitlink.com:443/0000-0001-8460-7034

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

do not implement real-time processing and 2) the two-stage
algorithms cannot respond quickly to high-speed evolving
data streams, etc. Considering the limitations of the above
two-stage algorithms, some fully online stream clustering
algorithms have been developed [2], [13], [14], [15], [16].
These algorithms use a tree or graph structure that is updated
and searched in real time, enabling fast responses to cluster-
ing requests. The fully online algorithms improve clustering
efficiency and quality to a certain extent.

In many real-world scenarios, different clusters in the
data stream often have different densities and there may
be ambiguous boundaries between clusters. While this is
a well-recognized problem, most existing stream clustering
algorithms either focus only on the identification of clusters
with varying densities [17], [18] or on the detection of clusters
with ambiguous boundaries [13], [19]. To our knowledge, none
of the existing stream clustering algorithms tackle the problem
in a unified way. To solve the above problem, this article
proposes a fully online stream clustering algorithm called Fast
Boundary Peeling Stream Clustering (FBPStream1). To utilize
FBPStream, we introduce a decay-based KDE, which takes
into account both the temporal and spatial distribution of each
micro-cluster. Then, an efficient boundary micro-cluster peel-
ing clustering strategy based on the decay-based kernel density
(DKD) is used to reveal the potential core micro-clusters by
peeling off the boundary micro-clusters, which improves the
efficiency and accuracy of clustering. Experimental results on
a wide range of synthetic and real-world data streams show
that FBPStream can effectively tackle the above problem in a
unified manner.

In summary, the main contributions of this article are as
follows.

1) A fully online stream clustering algorithm FBPStream
is proposed, which can simultaneously guarantee the
clustering efficiency and quality.

2) A decay-based KDE is proposed. It can discover clusters
with varying densities and identify the evolving trend of
streams well.

3) An efficient boundary micro-cluster peeling clustering
strategy is proposed to improve the clustering quality of
clusters with ambiguous boundaries.

The rest of this article is organized as follows. Section II
reviews studies related to our work. The relevant fundamen-
tal concepts and definitions are introduced in Section III.
Section IV gives a high-level overview in terms of the general
framework and process. The key techniques utilized in the
proposed algorithm are described in detail in Section V. The
experimental results on synthetic and real-world datasets are
thoroughly analyzed in Section VI. Finally, the article is
summarized in Section VII.

II. RELATED WORK

As mentioned in Section I, most existing stream clustering
algorithms follow the two-stage framework [20], [21], [22],
[23]. These algorithms receive data in the online stage and
summarize the original data into micro-clusters or grid cells.

1Code available: https://github.com/Du-Team/FBPStream.

In the offline stage, micro-clusters (grid cells) are represented
as pseudo-points and are reclustered or merged according to
some traditional clustering algorithms (sometimes with slight
modifications) to form the final clusters.

According to the traditional clustering methods used in
the offline stage, these two-stage algorithms can be classified
into partition-based clustering algorithms [10], [24], [25],
hierarchy-based clustering algorithms [26], [27], [28], density-
based clustering algorithms [19], [29], [30], [31], [32], and
grid-based clustering algorithms [18], [33], [34], [35]. Among
them, density-based and grid-based clustering algorithms have
the advantages of identifying arbitrarily shaped clusters and
detecting outliers. For example, Cao et al. [29] propose the
DenStream algorithm, which defines the reachability between
core micro-clusters based on the idea of DBSCAN. It connects
all micro-clusters whose distance is smaller than the reachable
distance threshold to form the final clusters. HDDStream [30]
addresses the clustering problem for high-dimensional stream-
ing data with density-based projection. The concept of the
shared density map is introduced in the DBSTREAM [19],
which improves the clustering quality by explicitly captur-
ing the density of the original data between micro-clusters.
DWDP-Stream [17] is a recently proposed algorithm based
on density peak clustering (DPC) [36]. It introduces natural
neighbors and an improved allocation process to enhance
clustering performance. Chen and Tu [33], [34] proposed
D-Stream, a density grid-based clustering algorithm, which
clusters arbitrarily shaped data streams by merging adja-
cent dense grids and transition grids. Based on the idea of
D-Stream, MR-Stream [18] employs a multiresolution grid
technique to improve the clustering quality. MuDi-Stream [31]
clusters stream data using micro-clusters and grids. The
grid-based method is used as an outlier buffer to handle noise
and multidensity data. However, these two-stage algorithms
do not achieve real-time processing in the true sense of the
word because they are based on timed processing of short
batches. In response to high-speed evolving data streams, they
may miss concept drifts. For instance, during network traffic
monitoring, malicious network activities tend to evolve and
change over time. If the algorithm does not detect concept
drifts frequently enough, it may miss new concepts and
patterns in malicious network traffic. As a result, novel forms
of network attacks or anomalies may not be detected, which
may threaten network security.

A portion of the stream clustering algorithms adopt the
fully online framework. For example, CEDAS [13] employs
a graph structure to improve the efficiency of clustering.
In the first stage of the algorithm, new points are added
to existing micro-clusters or are used to form new micro-
clusters, and micro-cluster information is updated. Then,
it searches for overlapping micro-clusters in the second stage
and specifies that each macro-cluster consists of a graph
of intersecting micro-clusters. EDMStream [14] is a fully
online density-based stream clustering algorithm developed
by Gong et al. It is an online version of the traditional
DPC. It maintains a dependency tree (DP-Tree) consisting of
all active micro-clusters incrementally in memory and cuts
tree by adaptively adjusting a minimum connection threshold.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT ONLINE STREAM CLUSTERING BASED ON FAST PEELING 3

After the cut, each subtree forms a single cluster. In addition,
Li et al. propose the ESA-Stream algorithm [16], which is
a fully online grid-based stream clustering algorithm. The
algorithm uses a parameter adaptive technique that automat-
ically adjusts the parameters to improve the quality of the
clustering results. It also uses an efficient dimensionality
reduction technique based on the grid density centroid to
reduce the dimension of high-dimensional data, which greatly
improves the efficiency of clustering.

The density-based and grid-based stream clustering algo-
rithms mentioned above are capable of clustering arbitrarily
shaped data streams. However, their clustering effectiveness is
reduced when the data streams have clusters with varying den-
sities and ambiguous boundaries. To solve similar problems in
the traditional clustering domain, Averbuch-Elor et al. [37]
propose the BP algorithm. They develop a technique to
iteratively identify the border points and peel off them to
reveal the potential cluster cores. Du et al. [38] propose
the ROBP algorithm, which employs a density estimation
based on the Cauchy kernel and a linkage criterion based on
the shared neighborhood information. ROBP further improves
the clustering accuracy and efficiency on the basis of BP.
DCF [39] employs the mutual k-NN graph to optimize the
DPC algorithm, allowing it to discover peaks of clusters with
varying densities. Li et al. [40] propose the LGD algorithm,
which introduces the concept of local gap density to handle
high-dimensional data with varying densities. Although the
above algorithms have the ability to detect clusters with
varying densities or ambiguous boundaries, they cannot be
applied in data streaming.

III. FUNDAMENTAL CONCEPTS

Many devices are constantly generating data streams.
Processing such enormous amounts of data offline requires
much storage space and computing power. Therefore, real-
time data stream processing is a great solution [41], [42], [43].
A data stream is a massive, unbounded, ordered sequence of
arriving data points. A data stream can be represented formally
as X = {x1, x2, . . . , xn}, where xi denotes the i th arrived
d-dimensional data point, 1 ≤ i ≤ n, 1 ≤ d ∈ Z+, and
n→∞.

Clustering for evolving data streams often requires using
specific window models to capture the concept drifts of
the data stream. There are three well-known window mod-
els: landmark window, sliding window, and damped window
[5], [29]. Our algorithm is based on a damped window model.
In this study, an exponential decay function widely used in
temporal applications is chosen as the decay function.

Each data point xi in the data stream is assigned a weight,
which gradually decays over time. If xi arrives at time tc, the
weight of xi at time t (t ≥ tc) is denoted as W (xi , t), defined
as follows:

W (xi , t) = λ
t−tc (1)

where λ ∈ (0, 1) is a constant known as the decay factor. The
higher the λ value, the faster the data weights decay, i.e., the
less influence the old data has on the clustering results.

Given the enormity of data streams, storing them in
their entirety becomes impractical. Consequently, employing
data compression techniques becomes necessary. Similar to
DenStream [29] and DBSTREAM [19] algorithms, our
algorithm uses the micro-cluster structure to summarize the
original data points. A visualization of the micro-cluster
structure is presented in the Supplementary Material. The
micro-cluster structure is expressed as a feature vector MF
with five attributes, which facilitates its dynamic maintenance.

Definition 1 (MF): At time t , for a micro-cluster mc, its
feature vector is defined as

MFmc = (s, r, W (mc, t), tu, status) (2)

where s is the seed point of mc (see Definition 2). r is the
predefined radius of all micro-clusters. W (mc, t) denotes the
weight of mc at time t [see (3)]. tu is the last update time of
mc. status indicates whether mc is active [see (6)].

Our algorithm uses an actual data point, called a seed
point, to create and represent a micro-cluster, instead of the
micro-cluster center defined in DenStream [29]. The definition
of a seed point is as follows.

Definition 2 (Seed Point, s): If a data point, denoted as s,
arriving at time t , does not fall within a predefined radius of
any existing micro-cluster, it is designated as a seed point for
the construction of a new micro-cluster.

Each point is assigned to the micro-cluster of its nearest
seed point, provided that the distance is within the radius
threshold r .

For a micro-cluster mc, at a given time tc, let V (mc, tc) be
the set of data points that are summarized into the mc at or
before tc. Then, the weight W (mc, tc) of mc is defined as the
sum of the weights of all data points in V (mc, tc), defined as
follows:

W (mc, tc) =
∑

xi∈V (mc,tc)

W (xi , tc). (3)

The weight of each micro-cluster is constantly changing
due to the constant arrival of data and the concept drift [44],
[45], [46] that occurs along with it. When a new data point xo

arrives at time t , if it is not within any existing micro-cluster,
a new micro-cluster is established by xo (see Definition 2).
If the distance between an existing micro-cluster mc and the
new data point xo is minimal and smaller than a predefined
radius, mc will absorb xo and update weight as follows:

W (mc, t) = λ
t−tc

∑
xi∈V (mc,tc)

W (xi , tc)+W (xo, t). (4)

Specifically, recalculate the sum of the weights of all data
points within the micro-cluster. By applying (1) and (3) to (4),
we can derive

W (mc, t) = λ
t−tc W (mc, tc)+ 1 (t > tc) (5)

where W (mc, tc) is the weight of mc at the last moment tc
before t .

In order to improve the readability, Nomenclature lists the
major symbols and notations used in the article.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Framework of FBPStream.

IV. OVERVIEW OF FBPSTREAM

A. Framework

The proposed FBPStream framework is outlined in Fig. 1.
With the interplay of the six components, FBPStream can
efficiently cluster data streams in real time. The descriptions
of all the components are given below.

1) Data Stream Absorber: It receives each data point from
the data stream and summarizes it into an existing micro-
cluster (or creates a new one) (see Section III for details).

2) Outlier Pool: It caches inactive micro-clusters which
cannot be removed directly from memory because they
may be activated in the future (see Section V-A for
details).

3) Relationship Propagation Tree (RP-Tree): It collects
active micro-clusters and transforms them into nodes
with k-nearest neighbor information for subsequent
clustering.

4) Graph Manager: It contains an augmented k-NN graph
and a logical mutual k-NN graph (see Section V-B
for details). The augmented k-NN graph maintains at
most αk-nearest neighbors incrementally for each active
micro-cluster. It is used to accelerate the update of the
k-NN graph. An abstraction of the augmented k-NN
graph yields the logical mutual k-NN graph, which is
the basis of the entire algorithm.

5) Watermark-Based Peeler: It rapidly peels off boundary
micro-clusters from active micro-clusters and reveals
potential core micro-clusters (see Section V-D for
details).

6) Parallel Clustering Executor: It efficiently clusters the
active micro-clusters in the RP-Tree based on the under-
lying logical structure (logical mutual k-NN graph)
and outputs the clustering results (see Section V-E for
details).

B. Workflow

To facilitate the understanding of the execution flow of FBP-
Stream, a comprehensive flowchart of the proposed algorithm
is provided in the Supplementary Material. For a more detailed
elaboration of the proposed algorithm, please see the next
section. Based on the above overview of FBPStream, the
following unique features can be obtained, which are verified
in the subsequent theoretical analyses and experimental results.

1) Real-time: It processes the data stream in real-time in a
fully online fashion.

2) Effective: It peels off boundary micro-clusters based on
the DKD to reveal potential core micro-clusters. This
idea facilitates detecting clusters with varying densities
and ambiguous boundaries.

3) Efficient: It uses a variety of acceleration mechanisms in
the fully online state, including the fast peeling mech-
anism, updating the augmented k-NN graph, extracting
the logical mutual k-NN graph and the parallel clustering
mechanism, etc.

V. PROPOSED FBPSTREAM

In this section, we first explain the key techniques and
concepts of the important components of FBPStream. Then,
we give the complete pseudo-code of the algorithm and
analyze its complexity in detail.

A. Detection of Outliers

In FBPStream, we consider micro-clusters with lower
weights as outliers [47], [48], [49]. In general, micro-clusters
may become outliers due to two factors: they absorb few
data points, or they may not absorb new data points for
long periods, causing them to become obsolete. Instead of
deleting these outliers immediately, they are temporarily stored
in the Outlier Pool [14], [29] and considered inactive (i.e.,
inactive micro-clusters). When an outlier in the Outlier Pool
has absorbed enough data points from the data stream, it is
still possible to transform into a non-outlier (i.e., an active
micro-cluster). Such activated micro-clusters are inserted into
the RP-Tree. Clustering is performed only on the active
micro-clusters in the RP-Tree.

Cao et al. [29] and Chen and Tu [33] prove that when
t → ∞, the sum of the weights of all data points in an
unbounded data stream is a constant 1/(1 − λ). Based on
the above knowledge, we give the following definition to
distinguish active and inactive micro-clusters:

status =

{
active, if W (mc, t) ≥ β

/(
1− λ

)
inactive, otherwise

(6)

where status denotes whether mc is active at time t . β is a
factor that controls the weight threshold. It is easily known

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT ONLINE STREAM CLUSTERING BASED ON FAST PEELING 5

Fig. 2. Examples of some key techniques. (a) Update of the augmented k-NN graph. (b) Extraction of the logical mutual k-NN graph. (c) Linkage of
boundary micro-clusters, where red circles are boundary micro-clusters, blue points are core micro-clusters, and arrows point to representatives. (d) Assignment
of boundary micro-clusters and two clusters are generated (blue and yellow points, respectively).

that the larger the β value, the less the number of active
micro-clusters.

In addition, when a new micro-cluster is created by a seed
point, the new micro-cluster should be inactive. Therefore, the
range of β can be derived from the following equation:

1 < β
/(

1− λ
)

< 1
/(

1− λ
)

⇒ 1− λ < β < 1. (7)

By using the outlier detection technique, we are able to
control the number of active micro-clusters and ignore the
inactive micro-clusters with lower weights. As a result of this
technique, the algorithm is robust to outliers and noise in
the data stream. A cleanup strategy consistent with EDM-
Stream [14] is employed for the Outlier Pool to recycle
memory space.

B. Graph Manager

As shown in Fig. 1, FBPStream runs on the Graph Manager.
The main role of the Graph Manager is to ensure the efficient
output of the mutual k-NN graph, which is a logical structure
extracted from an augmented k-NN graph.

1) Augmented k-NN Graph: We generalize the k-NN graph
to the data stream environment, where each vertex in the
graph is an active micro-cluster. In a high-speed evolutionary
data stream environment, the emergence and extinction of
active micro-clusters will directly change the structure of the
k-NN graph. To cope with the negative effects of frequent
updates of the k-NN graph, we design the augmented k-NN
graph to accelerate the update operation. It maintains at most
αk-nearest neighbors (generally α = 3) incrementally for each
active micro-cluster.

We give an example in Fig. 2(a) to illustrate the principle of
updating the augmented k-NN graph (including insertion and
deletion). Before time t1, a∼i are the active micro-clusters in
the RP-Tree. They are arranged in ascending order of distance
to a given active micro-cluster mc. They form the list of
αk-nearest neighbors of mc (α = 3, k = 3), where the
k-nearest neighbors of mc are {a, b, c}.

Assume that at time t1, the inactive micro-cluster j grows
into an active micro-cluster so that it will be inserted into the
RP-Tree. Correspondingly, the augmented k-NN graph needs
to be updated. As shown in Fig. 2(a), to ensure the order-
liness of the list of αk-nearest neighbors of mc, the Binary
Insertion method is used to speed up the insert operation of j.

This method can quickly detect the position to be inserted.
Thus, j is eventually inserted after f, and i is moved out of the
list accordingly.

Suppose that the active micro-cluster c decays to an inactive
micro-cluster at time t2 as the data stream evolves. Then,
it will be removed from the k-nearest neighbors of mc. In this
case, the kth nearest neighbor of mc needs to be redetermined.
The rudimentary approach is to recalculate the distance from
mc to each active micro-cluster. However, the approach is
inefficient when it occurs frequently. To overcome the above
problem, we augment the k-nearest neighbors to αk-nearest
neighbors. When a micro-cluster is removed from the first
k-nearest neighbors due to decay, the nearest neighbor behind
it (the original (k + 1)st nearest neighbor) is directly filled
into the missing position without additional computation. This
strategy counteracts the negative impact of updating the k-NN
graph on the efficiency of the clustering algorithm execution.
As shown in Fig. 2(a), after c is removed, d fills the missing
position and becomes the kth nearest neighbor of mc.

2) Logical Mutual k-NN Graph: We can extract the mutual
k-NN graph from the augmented k-NN graph. As shown
in Fig. 2(b), assume that mci and mc j are two active
micro-clusters in the RP-Tree at time t . We set R = ∥mc −
Nk(mc, t)∥, where ∥·∥ is the Euclidean distance between two
micro-clusters (i.e., the distance between the seed points of
two micro-clusters). Nk(mc, t) is the kth nearest micro-cluster
to mc at time t .

If ∥mci − mc j∥ ≤ min(Ri , R j), then mci and mc j are
mutual k-nearest neighbors. That is, mc j ∈ mkNN(mci , t) or
mci ∈ mkNN(mc j , t).

Through the above update and extraction mechanisms, the
latest mutual k-NN graph can be obtained in real-time in
the rapidly evolving data stream. It supports each of the key
techniques below.

C. Decay-Based Kernel Density

In the clustering phase, most data stream clustering algo-
rithms only use a fixed distance threshold to cluster active
micro-clusters that are close to each other. When clusters
have varying densities, these algorithms may be less effective.
In contrast to traditional data stream clustering algorithms,
we develop a robust DKD estimator for the active micro-
clusters. The estimator not only captures the time-varying
weights of the micro-clusters but also takes into account the
spatial distribution of the micro-clusters.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Example of the boundary micro-cluster peeling clustering strategy (ω = 2). (a) Active micro-clusters in the RP-Tree, where seed points (black points)
are used to represent micro-clusters. (b) Boundary micro-clusters (red points) of the first layer are peeled off (i.e., l = 1). (c) Boundary micro-clusters of
the second layer continue to be peeled off (i.e., l = 2). (d) Core micro-clusters are clustered, and two macro-clusters are obtained (blue and yellow points,
respectively). (e) Boundary micro-clusters are assigned, and the clustering results are obtained (blue and yellow points, respectively).

Kernel density estimation (KDE) is a widely used density
measure. Regarding the choice of the kernel function, we adopt
a widely used smooth kernel function, the Gaussian kernel
function. In addition, designing a suitable bandwidth is crucial
for the density estimator. Assuming a fixed bandwidth is
utilized, the following problems may be encountered: 1) it is
challenging to choose a suitable global bandwidth manually
and 2) a fixed bandwidth means that the densities of points
in sparse regions are lower than in dense regions. It does not
facilitate discovering clusters with varying densities.

To overcome the above problems, we adopt a general
adaptive scheme similar to [50] and utilize mutual k-nearest
neighbors (mk-NN) to capture the distribution information of
the data. Our system works on micro-clusters, not original data
points. Therefore, we define the micro-cluster-based Gaussian
kernel density as

MKD(mci , t) =
∑

mc j∈mkNN(mci ,t)

exp
(
−∥mci−mc j∥

2

R2
j

)
(8)

where mkNN(mci , t) is a set of mutual k-nearest neighbor
micro-clusters of mci at time t . R j is the distance from mc j

to its kth nearest neighbor at time t .
Definition 3 (DKD): Let mci be a micro-cluster at time t .

After considering the weight and the MKD (micro-cluster-
based Gaussian kernel density) of mci together, the DKD of
mci is defined as

DKD(mci , t) = W (mci , t) ·MKD(mci , t). (9)

The DKD integrates information about the weights and spa-
tial distribution of micro-clusters. A higher density indicates
that the micro-cluster has a higher weight and a more dense
distribution. Therefore, it can discover clusters with varying
densities and identify the evolving trend of streams well.

D. Watermark-Based Peeler

Most density-based stream clustering algorithms use a
variant of DBSCAN to perform simple clustering of micro-
clusters. These algorithms may be less effective when clusters
have varying densities and ambiguous boundaries. Our pro-
posed FBPStream uses an efficient boundary micro-clusters
peeling strategy to improve the clustering results. It can reveal
potential core micro-clusters by fast identifying and peeling off
boundary micro-clusters with lower density. Fig. 3 illustrates
the process of peeling off boundary micro-clusters.

In order to adapt the peeling process to the distribution of
different datasets, we introduce the concept of watermark (ω
for short). It is an integer hyperparameter greater than or equal
to 0 set by the user. More intuitively, it indicates the level
of peeling. A higher watermark value means a higher level
of peeling, meaning more active micro-clusters are peeled as
boundary micro-clusters.

As shown in Algorithm 1, we give the procedure of the
algorithm for fast peeling based on watermark. During the
peeling process of each layer, it first calculates the average
density (Line 4). Then, micro-clusters with densities less than
the average are considered boundary micro-clusters. Finally,
it fast peels the boundary micro-clusters off to reveal the
potential core micro-clusters with higher density [Lines 5–10,
corresponding to Fig. 3(b) and (c)]. In particular, it should be
noted that when the user sets watermark = 0, the algorithm
does not perform the peeling process (i.e., it skips Lines 3–11)
and considers all active micro-clusters in the RP-Tree as core
micro-clusters (Lines 1 and 2).

Algorithm 1 FastPeeling
Input: V = {mc|mc ∈ RP-Tree},

level of peeling ω;
Output: A set of boundary micro-clusters V border ,

a set of core micro-clusters V core;
1 V border ← ∅;
2 V core ← V ;
3 for l = 1; l ≤ ω; l++ do

4 ρ(l)
=

∑
mc∈V core

DK D(mc, t)

|V core|
;

5 foreach mc ∈ V core do
6 if DK D(mc, t) < ρ(l) then
7 V core ← V core \ {mc};
8 V border ← V border ∪ {mc};
9 end

10 end
11 end
12 return V border and V core .

Compared to the processing idea of [37] and [38], our
peeling strategy differs from it in three ways. First, FBPStream
maintains the density of each active micro-cluster incremen-
tally in memory. Thus, the density of each micro-cluster can
be obtained directly without any computational cost during
the peeling process. Second, FBPStream employs watermark
to control the number of layers peeled strictly, and the density
threshold for peeling is calculated directly in each layer.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT ONLINE STREAM CLUSTERING BASED ON FAST PEELING 7

Third, FBPStream peels each layer directly based on the
density thresholds instead of a percentage. The effectiveness
of our boundary micro-cluster peeling strategy is demonstrated
later in the experimental results.

E. Parallel Clustering Executor

After the peeling process, the active micro-clusters in
the RP-Tree are divided into boundary micro-clusters and
core micro-clusters. When cluster boundaries are ambiguous,
we first cluster the core regions separated by boundary regions
to prevent incorrect clustering. Clustering core micro-clusters
yield intermediate macro-clusters. Then, we try to assign the
boundary micro-clusters to the existing macro-clusters or form
new clusters to obtain the final clustering results.

1) Clustering Core Micro-Clusters: Algorithm 2 shows the
detailed process of clustering core micro-clusters.

Algorithm 2 CoreClustering
Input: A set of core micro-clusters V core ,

the Logical Mutual k-NN Graph;
Output: A set of intermediate macro-clusters

Sm = {C1, C2, . . . , Cm};
1 Sm ← ∅;
2 if |V core| = 1 then
3 if mc.cluster = null then // mc ∈ V core
4 C1 ← create a new empty macro-cluster;
5 C1 ← C1 ∪ {mc};
6 Sm ← Sm ∪ {C1};
7 return Sm;
8 end
9 end

10 foreach mc ∈ V core do
11 if mc.visi ted = T rue then
12 continue;
13 end
14 mc.visi ted ← T rue;
15 if mc.cluster = null then
16 C t ← create a new empty macro-cluster;
17 C t ← C t ∪ {mc};
18 Sm ← Sm ∪ {C t };
19 end
20 Q← create a new empty queue;
21 Q← Q ∪ {mc};
22 while |Q| > 0 do
23 mci ← Q.poll();
24 foreach mc j ∈ mk N N (mci , t) do
25 if mc j ∈ V core and mc j .visi ted = False then
26 mc j .visi ted ← T rue;
27 Q← Q ∪ {mc j };
28 Add mc j to mci .cluster ;
29 end
30 end
31 end
32 end
33 return Sm .

When only one core micro-cluster exists, only one
macro-cluster contains the core micro-cluster (Lines 2–9).
If there are multiple core micro-clusters, then we perform a
breadth-first traversal of the logical mutual k-NN graph with
the help of a queue. The core micro-clusters that are mutual
k-nearest neighbors are merged into the same macro-cluster
(Lines 10–32). Eventually, the intermediate macro-clusters
Sm = {C1, C2, . . . , Cm} are generated. Fig. 3(d) shows an
example of clustering core micro-clusters.

2) Assigning Boundary Micro-Clusters: Next, we try to
assign the peeled boundary micro-clusters to the macro-
clusters C1, C2, . . . , Cm generated by core micro-clusters
according to a specific rule. The rule is to construct a path
(called a chain) for each boundary micro-cluster that connects
to a core micro-cluster. However, these paths may not even-
tually connect to core micro-clusters. For this case, we will
explain in detail below.

In order to generate such a chain for each boundary
micro-cluster, we first need to explore an appropriate local
relationship for each boundary micro-cluster, which we call a
representative. It is defined as follows.

Definition 4 (Representative, Rep): At time t , there are two
active micro-clusters mci and mc j in the RP-Tree. If mc j ∈

mkNN(mci , t) and mc j is the nearest micro-cluster to mci with
higher density, then mc j is the representative of mci , denoted
as Rep(mci , t) = mc j .

Property 1: There are no loops in these chains [51], i.e.,
each chain is a directed acyclic graph. A proof of acyclic-
ity is given in the Supplementary Material. This property
of acyclicity ensures the feasibility of assigning boundary
micro-clusters.

As shown in Algorithm 3, we give the detailed procedure
for finding a representative for each boundary micro-cluster at
time t . Since we do not require that the representatives be core
micro-clusters, they may be boundary micro-clusters as well.
In this way, the emergence of new clusters can be captured
effectively.

Algorithm 3 BorderLinkage
Input: A set of boundary micro-clusters V border ,

the Logical Mutual k-NN Graph;
Output: A set of boundary micro-clusters V border ;

// with representatives
1 foreach mci ∈ V border do
2 foreach mc j ∈ mk N N (mci , t) do
3 if DK D(mc j , t) > DK D(mci , t) then
4 Rep(mci , t)← mc j ;
5 break;
6 end
7 end
8 end
9 return V border .

In the example depicted in Fig. 2(c), a chain is generated
for each boundary micro-cluster after the representatives of all
boundary micro-clusters are determined. The start of a chain
is a boundary micro-cluster (with the lowest density), and the
end of a chain may be a core micro-cluster or a boundary
micro-cluster (with the highest density).

In a chain, the micro-cluster with the highest density
determines the category labels of all boundary micro-clusters.
Therefore, we define the following relationship propagation
rule.

Definition 5 (Relationship Propagation Rule, RPR): At
time t , there is a chain consisting of different micro-clusters
mc1, mc2, . . . , mcn . Among these micro-clusters, there are the
following relationships: Rep(mc1, t) = mc2, Rep(mc2, t) =
mc3, . . . , Rep(mcn−1, t) = mcn , where mc1, mc2, . . . , mcn−1
are boundary micro-clusters. If mcn is a core micro-cluster,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

micro-clusters mc1, mc2, . . . , mcn−1 should be merged into the
macro-cluster where mcn is located. Otherwise, micro-clusters
mc1, mc2, . . . , mcn should be merged together to form a new
cluster.

According to Definition 5, the assignment rule of boundary
micro-clusters is illustrated with an example in Fig. 2(d).
As can be seen from the figure, the cluster formed by the
blue points is expanded from an existing macro-cluster. The
cluster formed by the yellow points is newly generated.

Finally, we give the detailed procedure for assigning the
boundary micro-clusters in Algorithm 4. We devise a recursive
function to recursively assign the boundary micro-clusters on
the same chain (Lines 8–23). The exit of the recursion is the
end of a chain (Lines 9–17). A new cluster is generated if the
end of a chain is a boundary micro-cluster that has not yet
been assigned (Lines 10–14). Otherwise, the category label of
the end of the chain (core micro-cluster) is returned directly.
Then all the remaining boundary micro-clusters in the chain
are assigned to the cluster where the end of the chain is located
(Lines 19–21). After assigning all the boundary micro-clusters,
the clustering results are obtained (Line 7).

Algorithm 4 BorderAssignment
Input: A set of boundary micro-clusters V border ,

a set of intermediate macro-clusters Sm;
Output: A set of result clusters

SC = {C1, C2, . . . , C K };
1 foreach mci ∈ V border do
2 if mci .visi ted = T rue then
3 continue;
4 end
5 Call function assign(mci , Sm);
6 end
7 return SC ← Sm .
// assign recursively

8 function assign(mc, Sm)
9 if Rep(mc, t) = null then // mc is the end

10 if mc.cluster = null then // mc ∈ V border
11 C t ← create a new empty cluster;
12 C t ← C t ∪ {mc};
13 Sm ← Sm ∪ {C t };
14 end
15 mc.visi ted ← T rue;
16 return;
17 end
18 Call function assign(mc, Sm);
19 if mc.cluster ̸= Rep(mc, t).cluster then
20 Add mc to Rep(mc, t).cluster ;
21 end
22 mc.visi ted ← T rue;
23 end

F. FBPStream and Complexity Analysis

1) Algorithm Details: The pseudo-code for our FBPStream
algorithm is shown in Algorithm 5.

Before processing the data stream X , FBPStream creates a
thread pool containing two threads (Line 2). The threads in
the thread pool will be used later in parallel clustering. First,
an attempt is made to absorb xi into the nearest active micro-
cluster mci and update the weight of mci (Lines 4–8). Then,
the weight of each micro-cluster in the RP-Tree is decayed
in turn, and the micro-clusters are checked to see whether

Algorithm 5 FBPStream
Input: Data stream X , micro-cluster’s radius r ,

decay factor λ , weight threshold factor β,
the number of neighbor micro-clusters k,
level of peeling ω;

Output: A set of result clusters SC ;
1 t ← 0;
2 Create a thread pool {T hread1, T hread2};
3 foreach xi ∈ X do
4 Find the micro-cluster mci nearest to xi from RP-Tree;
5 if d(xi , mci) ≤ r then
6 Summarize xi into mci ;
7 Update weight of mci by Eq. (4);
8 end
9 foreach mc ∈ RP-Tree do

10 Decay the weight of mc;
11 if W (mc, t) < β/(1− λ) then
12 Remove mc from RP-Tree;
13 Insert mc into Outlier Pool;
14 Remove mc from Augmented k-NN Graph;
15 end
16 end
17 if xi is not summarized into mci then
18 Find the micro-cluster mc j nearest to xi from
19 the Outlier Pool;
20 if d(xi , mc j) ≤ r then
21 Summarize xi into mc j ;
22 Update weight of mc j by Eq. (4);
23 if W (mc j , t) ≥ β/(1− λ) then
24 Remove mc j from Outlier Pool;
25 Insert mc j into RP-Tree;
26 Insert mc j into Augmented k-NN Graph;
27 end
28 end
29 end
30 if xi is not summarized into mci and mc j then
31 mct ← Create a new micro-cluster by xi ;
32 Insert mct into Outlier Pool;
33 end
34 if RP-Tree has been updated then
35 V border , V core ← call function FastPeeling;
36 Sm , V border ←

37 T hread1 calls function CoreClustering,
38 T hread2 calls function BorderLinkage;
39 SC ← call function BorderAssignment;
40 Output SC ;
41 end
42 t ← t + 1;
43 end

they decay to an inactive status (Lines 10 and 11). If yes, the
micro-clusters are removed from the RP-Tree and inserted into
the Outlier Pool (Lines 12 and 13). Also, the micro-clusters
are removed from the augmented k-NN graph (Line 14). If
xi is not absorbed into an active micro-cluster, an attempt is
made to absorb it into the nearest inactive micro-cluster mc j ,
and the weight of mc j is updated (Lines 21 and 22). After
mc j has absorbed xi , we need to check whether mc j grows
into an active micro-cluster (Line 23). If yes, mc j is removed
from the Outlier Pool and inserted into the RP-Tree (Lines 24
and 25). Also, mc j is inserted into the augmented k-NN graph
(Line 26). If xi is not absorbed into any existing micro-cluster,
then we create a new micro-cluster mct with xi as the seed
point and insert it into the Outlier Pool (Lines 30–33).

Next, by determining whether an update has taken place
in the RP-Tree, we determine whether clustering should be
performed (Lines 34–41). The possible update scenarios are
as follows: 1) a micro-cluster in the RP-Tree absorbs a newly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT ONLINE STREAM CLUSTERING BASED ON FAST PEELING 9

TABLE I
DATASETS USED IN EXPERIMENTS

arrived data point xi ; 2) a micro-cluster is removed from
the RP-Tree; and 3) a new micro-cluster is inserted into the
RP-Tree.

The clustering process starts with a fast peeling of the
boundary micro-clusters in the RP-Tree to obtain the set
of boundary micro-clusters V border and the set of core
micro-clusters V core (Line 35). Then, the clustering of core
micro-clusters and the linkage of boundary micro-clusters
are performed in parallel using double threads to obtain the
intermediate macro-clusters Sm and the set of boundary micro-
clusters V border with representatives (Lines 36–38). After this,
an attempt is made to assign the boundary micro-clusters to
the existing macro-clusters to obtain the final clustering result
SC (Line 39). Finally, the clustering result is output (Line 40).

2) Time and Space Complexity Analysis: Assuming that the
number of micro-clusters in memory at time t is Mt (Mt ≪ n,
Mt ∈ Rd), where n is the number of data points in the data
stream X , d is the dimensionality of the data stream X , k
is the number of nearest neighbors, and αk is the number
of augmented nearest neighbors. In the worst case scenario,
FBPStream has a time complexity of O((d + ω + αk)nMt)

and a space complexity of O(αkd Mt). A detailed description
of each step of the complexity analysis is provided in the
Supplementary Material.

VI. EXPERIMENTAL RESULTS

A. Preparations

To evaluate the performance of FBPStream, we conduct
experiments on 15 different datasets. Table I provides the
details about five synthetic datasets and ten real-world datasets.
All experiments are conducted on a Lenovo Erazer Y40-70
(Intel i5-4210U, 4 cores, 1 thread/core, 2.40 GHz and 12 GB
RAM) with Win10. The FBPStream algorithm and ten com-
parison algorithms are implemented in Java 8.

1) Datasets: Due to page limitations, descriptions of 5 syn-
thetic datasets and 10 real-world datasets are provided in the
Supplementary Material. Data distributions of the four 2-D

Fig. 4. Data distributions of synthetic datasets. (a) Stream1. (b) Stream2.
(c) Stream3. (d) Stream4.

synthetic datasets are illustrated in Fig. 4. In our experiments,
the above datasets are normalized.

2) Comparison Algorithms: Based on the above datasets,
we compare the performance of FBPStream with ten
popular data stream clustering algorithms.2 ESA-Stream [16],
EDMStream [14], and CEDAS [13] are density-based
online clustering algorithms. Essentially, EDMStream is
an online clustering algorithm using DPC [36], while
CEDAS is an online version of DBSCAN. ESA-Stream is
optimized for clustering high-dimensional data streams using
a grid-based online clustering approach. DenStream [29],
HDDStream [30], DBSTREAM [19], DWDP-Stream [17],
D-Stream [33], MR-Stream [18], and MuDi-Stream [31]
follow the online-offline framework. Among them,
DenStream, HDDStream, DBSTREAM, and DWDP-Stream
use micro-clusters to summarize data. DenStream is a
streaming version of DBSCAN. To cluster high-dimensional
data streams, HDDStream uses density-based projection
methods. DBSTREAM is an optimized clustering algorithm
based on shared density between micro-clusters. DWDP-
Stream is an improved DPC algorithm using natural
neighbors. D-Stream, MR-Stream, and MuDi-Stream are
density- and grid-based clustering algorithms. D-Stream uses
fixed-resolution grids, while MR-Stream uses hierarchical
multiresolution grids. MuDi-Stream clusters multiresolution
data using grids and micro-clusters.

3) Evaluation Metrics: For all algorithms, we use two
metrics to measure their performance on each dataset. These
two metrics are purity [52] and cluster mapping measure
(CMM) [53]. We present a more detailed explanation of
evaluation metrics in the Supplementary Material.

2The proposed years for the baseline models: DWDP-Stream (2022), ESA-
Stream (2022), EDMStream (2017), CEDAS (2017), DBSTREAM (2016),
MuDi-Stream (2016), HDDStream (2012), MR-Stream (2009), D-Stream
(2007), and DenStream (2006).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
PERFORMANCE COMPARISON OF ALGORITHMS ON SYNTHETIC AND REAL-WORLD DATASETS

B. Clustering Results
We set up the relevant experiments on synthetic and real-

world datasets, respectively. For all algorithms involving
exponential decay functions, we carefully set the decay factors
to keep them at the same rate. For the same dataset, all
algorithms request clustering results at the same frequency
(fixed time interval, i.e., gap). Each algorithm is run with a
range of parameter values (see Table S1 in the Supplemen-
tary Material), and the best clustering results are presented
for each dataset (from the optimal parameter value). In the
Supplementary Material, Figs. S2 and S3 illustrate the clus-
tering results of all algorithms on 2-D synthetic datasets
(i.e., Stream1, Stream2, Stream3, and Stream4). Table II
presents the performance of all algorithms on each dataset in
Table I, where bolded letters indicate the best results in each
metric.

Initially, we test the ability of all algorithms to filter outliers,
recognize arbitrarily shaped clusters, and cope with concept
drifts on Stream1. For this purpose, we generate eight clusters
with arbitrary shapes. These clusters emerge and dissipate
successively over time, thereby simulating concept drifts.
Fig. S2 demonstrates the clustering results of all algorithms
at different gap times (t1 < t2 < t3 < t4). According to the
results of the experiment, only FBPStream is able to accurately
capture the evolution of the dynamic data stream among all

the algorithms. Moreover, it proves that FBPStream is robust
to outliers and noise.

After that, we test the ability of all algorithms to identify
clusters with varying densities and ambiguous boundaries.
Thus, we generate two clusters with significantly different
densities in the Stream2 dataset. Because the circular cluster
on the right is very sparse, each micro-cluster can only absorb
a few data points. As a result, only a few micro-clusters can
grow into active micro-clusters, which can only be maintained
in memory for a short period. The first row of Fig. S3
visually illustrates that FBPStream can effectively identify
clusters with varying densities, while nine comparison algo-
rithms (except DWDP-Stream) fail to do so. They divide the
low-density cluster on the right side into many sub-clusters.
Besides, we generate four clusters of Gaussian distributions
with the same standard deviation close to each other in
the Stream3 dataset. In Fig. S3, the second row of results
shows that FBPStream can handle clusters with ambiguous
boundaries as well. It is due to the fact that FBPStream’s
boundary-peeling strategy can accurately detect the boundaries
of clusters and identify their skeletons. DBSTREAM over-
segments the clusters. Since DBSTREAM determines the
connectivity between micro-clusters by a fixed shared density
threshold, it reduces the clustering accuracy when the data dis-
tribution is complex. DWDP-Stream, EDMStream, CEDAS,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT ONLINE STREAM CLUSTERING BASED ON FAST PEELING 11

and D-Stream misidentify the four clusters as one. DenStream,
HDDStream, MR-Stream, MuDi-Stream, and ESA-Stream
merge different clusters incorrectly. Combining the scenarios
of Stream2 and Stream3, we generate four clusters with varying
densities and ambiguous boundaries in the Stream4 dataset.
The third row of Fig. S3 illustrates that FBPStream can still
obtain high-quality clustering results when the clusters in the
data stream have varying densities and ambiguous boundaries.
All comparison algorithms fail to produce correct clustering
results. On the Hyperplane dataset, although FBPStream only
obtains the second- and third-highest scores in terms of
purity and CMM metrics, respectively, it demonstrates notable
advancements compared to the two fully online algorithms
(i.e., EDMStream and CEDAS). Specifically, it improves
purity by 34% and CMM by 7.6%.

Finally, we evaluate the clustering quality of all algo-
rithms on ten real-world datasets. As illustrated in Table II,
FBPStream outperforms all comparison algorithms on most
real-world datasets. On the NOAAweather dataset, FBP-
Stream’s purity improves by an average of 16% over all
comparison algorithms, while its CMM improves by an
average of 16.5%. Compared to all comparison algorithms,
FBPStream improves the purity by an average of 17.8% and
CMM by an average of 15.6% on the Powersupply dataset.
On the Adult dataset, FBPStream’s purity improves by an
average of 5.2% over all comparison algorithms. Compared
with D-Stream and HDDStream, FBPStream has a signifi-
cantly better CMM. In comparison with all other algorithms,
FBPStream improves purity by an average of 16.2% on the
Electricity dataset, and CMM by an average of 16.3%. On the
Insects dataset, FBPStream’s purity improves by an average
of 28.6% over all comparison algorithms, while its CMM
improves by an average of 13.8%. Compared to all comparison
algorithms, FBPStream improves the purity by an average
of 14.2% and CMM by an average of 12.2% on the Rialto
dataset. On the Airline dataset, FBPStream obtains the highest
CMM while maintaining the next highest purity. On the Poker
dataset, FBPStream’s purity improves by an average of 8.2%
over all comparison algorithms. FBPStream’s CMM improves
by an average of 19.2% over competitors. Furthermore, its
CMM is far superior to MR-Stream and MuDi-Stream. For the
high-dimensional dataset Covertype, FBPStream still achieves
better clustering results while ensuring clustering efficiency.
Specifically, the purity and CMM of FBPStream improve by
an average of 10.6% and 9.7% over competitors, respectively.
Clustering the Sensor dataset with millions of data, FBPStream
takes only 29.620 s. It improves the purity and CMM by an
average of 45.9% and 23.4% over all comparison algorithms,
respectively. In summary, the clustering purity and CMM of
FBPStream show an average improvement of 16.7% and 15%,
respectively, compared to all the comparison algorithms.

Overall, our results prove that FBPStream is capable of
capturing concept drifts, filtering outliers, and detecting
clusters with arbitrary shapes. Moreover, FBPStream can
effectively cluster data streams with varying densities and
ambiguous boundaries. Two factors contribute to FBPStream’s
ability to reconstruct high-quality clusters from data streams:
1) the decay-based KDE method and 2) the boundary

micro-cluster peeling clustering strategy. The decay-based
KDE integrates information about the weights and spatial
distribution of micro-clusters. It can discover clusters with
varying densities and identify the evolving trend of streams
well. The boundary micro-cluster peeling clustering strategy
first clusters the revealed core micro-clusters to obtain initial
clusters with clear boundaries. Then, it assigns the remaining
micro-clusters to the initial clusters to avoid erroneous
merging of boundary-ambiguous clusters. In contrast, other
stream clustering algorithms lack a mechanism to handle
both multidensity clusters and boundary-ambiguous clusters,
which reduces their performance.

Specifically, the weaknesses of the competitors are analyzed
as follows. EDMStream is a variant of DPC designed for
data streams, and thus, it inherits the drawbacks of DPC.
Like DPC, EDMStream employs a single density threshold
to ascertain cluster membership, which poses challenges in
detecting clusters with varying densities. Furthermore, the
simple data allocation strategy employed by EDMStream may
struggle to accurately capture the true relationships within
complex-shaped clusters. As DenStream, HDDStream, and
CEDAS use fixed connection thresholds, it is difficult to cluster
streams that have clusters with varying densities or ambigu-
ous boundaries effectively. Although DBSTREAM establishes
connections between micro-clusters based on shared den-
sity, it still uses the global density threshold. It means that
DBSTREAM cannot cluster streams with varying densities
well. In DWDP-Stream, multidensity clusters can be detected,
but overlapping clusters cannot be identified. D-Stream uses
fixed-resolution grids, which presents a challenge in effectively
clustering complex distributed data. MR-Stream, utilizing
multiresolution grids, is capable of identifying clusters with
varying densities; however, it struggles to effectively cluster
streams that contain clusters with ambiguous boundaries.
Like MR-Stream, MuDi-Stream cannot identify clusters with
ambiguous boundaries. ESA-Stream focuses on the efficient
processing of high-dimensional data streams. It does not
provide mechanisms to handle clusters with varying densities
and ambiguous boundaries.

To compare the performance of all algorithms more visually
and scientifically, the statistical tests are provided in the
Supplementary Material.

C. Ablation Experiments

In this subsection, we perform a series of ablation experi-
ments to validate the effectiveness of two key contributions in
our algorithm: the decay-based KDE method and the boundary
micro-cluster peeling clustering strategy. The specifics of the
ablation experiments can be found in the Supplementary
Material.

D. Scalability Analysis

In order to verify the scalability of FBPStream, we conduct
scalability tests. The experiments utilize two representative
datasets: Covertype, which has higher dimensionality, and
Sensor, which contains a larger amount of data. In this
experiment, we select four micro-cluster-based algorithms,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. Running time of algorithms for varying data sizes on (a) Covertype
and (b) Sensor.

Fig. 6. Running time of algorithms for varying gap values on (a) Covertype
and (b) Sensor.

namely EDMStream, CEDAS, DBSTREAM, and DenStream,
for comparison with FBPStream.

First, we test the clustering speed of five different algorithms
using datasets of varying sizes. We fix gap = 10 000 for
all algorithms while varying the data size for clustering.
The results are shown in Fig. 5. FBPStream consistently
maintains a superior clustering speed as the size of the data
increases. In order to maximize the efficiency of clustering,
FBPStream employs a parallel clustering mechanism that
enables simultaneous boundary micro-cluster assignment and
core micro-cluster partitioning. Moreover, it is noteworthy that
the augmented k-NN graph and the logical mutual k-NN graph
are highly efficient. Therefore, FBPStream is more scalable for
large-scale datasets than the other four algorithms.

The algorithm used for high-speed data streams should be
capable of rapidly providing feedback on clustering results.
Next, we compare the time taken by different algorithms
to request clustering results at different frequencies. Hence,
the clustering process is repeated several times using the
entire dataset, altering only the time intervals between requests
(referred to as “gap”). A smaller gap value indicates shorter
time intervals, leading to increased request frequency. The
results are shown in Fig. 6.

We can see that the running time of FBPStream grows
most smoothly as the gap decreases. FBPStream initiates the
clustering process of active micro-clusters by automatically
capturing concept drifts within the stream, rather than
relying on user requests. When the number of requests keeps
increasing, the clustering frequency of FBPStream does not
increase. While the clustering frequency of other algorithms
continues to increase, clustering times also increase.
As a result, FBPStream exhibits enhanced scalability for
high-frequency user requests within high-speed data streams.

Fig. 7. Performance changes of FBPStream with varying parameter values on
Stream1 and Stream4. (a) Purity on Stream1. (b) CMM on Stream1. (c) Purity
on Stream4. (d) CMM on Stream4.

Finally, we test the effect of using different strategies
(single/multithreaded) in FBPStream on the efficiency of the
algorithm on real-world datasets. Details are provided in the
Supplementary Material.

E. Parameter Analysis

We investigate the influence of two critical parameters
of FBPStream on the algorithm’s performance. The critical
parameters are the number of nearest neighbors, k, and the
peeling level, ω. The experiments are conducted on two rep-
resentative synthetic datasets. Stream1 is a stream with concept
drifts. In Stream1, four graph groups appear sequentially,
simulating concept drifts. Cluster densities are uniform and
no clusters are overlapping. Stream4 is a stream character-
ized by clusters that have varying densities and ambiguous
boundaries. Fig. 7 shows the values of the purity and CMM
metrics obtained by FBPStream on the above two datasets with
different parameter values.

First, we analyze how the number of nearest neighbors, k,
affects the performance of the proposed algorithm. On the
Stream1 dataset and Stream4 dataset, when ω is certain, purity
decreases monotonically as k increases. In contrast, the CMM
shows a gradual increase. We conjecture that the high purity
at the beginning is due to the over-partitioning of the clusters.
A small k-value results in a lack of local information, which
is the cause of over-partitioning clusters. When the value
of k is large, micro-clusters from different clusters have a
higher probability of becoming mutual k-nearest neighbors.
The purity of the proposed algorithm is reduced due to wrong
mk-NN connections. When k falls within the range of [4, 14],
FBPStream is generally guaranteed to obtain high purity and
CMM on the two datasets.

Then, we observe the effect of peeling level ω on the
performance of the proposed algorithm. We fix the value of k.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT ONLINE STREAM CLUSTERING BASED ON FAST PEELING 13

As the value of ω increases, the performance of the algorithm
decreases and levels off on the Stream1 dataset. On the
Stream4 dataset, the performance of the algorithm gradually
increases and levels off. Stream4 has overlapping clusters,
so ω needs to be greater than 0, whereas Stream1 needs to be
0. Evidently, the algorithm’s performance exhibits negligible
variation when ω exceeds 3. Consequently, setting ω within the
range {0, 1, 2, 3} is recommended for the proposed algorithm
to achieve high purity and CMM.

In practical applications, the recommended range for the
number of nearest neighbors, k, is [4, 14]. The recommended
range for the peeling level, ω, is {0, 1, 2, 3}. The more complex
and overlapping the data distribution in a stream, the higher
the peeling level needs to be set (i.e., the larger the value of ω).
The analysis of the remaining parameters of the proposed
algorithm is presented in the Supplementary Material.

VII. CONCLUSION

In this article, we develop an efficient stream clustering
algorithm, FBPStream. We define a decay-based KDE, which
takes into account the temporal and spatial distribution of each
micro-cluster. It can discover clusters with varying densities
and identify the evolving trend of streams well. It enhances the
algorithm’s ability to capture the evolution of data streams with
varying densities. Furthermore, FBPStream uses an efficient
boundary micro-cluster peeling strategy to reveal the latent
clusters’ cores, making it easier to identify clusters with
ambiguous boundaries. Finally, a parallel clustering strategy is
employed to cluster core and boundary micro-clusters effec-
tively. Experiments show that FBPStream is highly competitive
in terms of efficiency and quality of results in clustering
compared to other algorithms.

Although FBPStream proves to be effective for clustering
some real-time data streams, further research is required to
adjust the peeling level to more complex data distributions
automatically. As a compromise, a performance metric can
be monitored during the execution of the algorithm. The
peeling level can be adjusted as needed if performance drops
are perceived. By adjusting the peeling level dynamically,
over-segmentation and under-segmentation of clusters can
be avoided. In addition, FBPStream may suffer from low
clustering quality when the stream’s dimensionality is high.
Therefore, clustering data streams with higher dimensionality
is also a worth-exploring issue.

REFERENCES

[1] C. C. Aggarwal, “The multi-set stream clustering problem,” in Proc.
SIAM Int. Conf. Data Mining, Anaheim, CA, USA, Apr. 2012,
pp. 59–69.

[2] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive clustering for
dynamic IoT data streams,” IEEE Internet Things J., vol. 4, no. 1,
pp. 64–74, Feb. 2017.

[3] S. Wang, L. L. Minku, N. Chawla, and X. Yao, “Learning from
data streams and class imbalance,” Connection Sci., vol. 31, no. 2,
pp. 103–104, Apr. 2019.

[4] D. Cheng, S. Zhang, and J. Huang, “Dense members of local cores-based
density peaks clustering algorithm,” Knowledge-Based Syst., vol. 193,
Apr. 2020, Art. no. 105454.

[5] A. Zubaroğlu and V. Atalay, “Data stream clustering: A review,” Artif.
Intell. Rev., vol. 54, no. 2, pp. 1201–1236, Feb. 2021.

[6] X. Liu, “Incomplete multiple kernel alignment maximization for clus-
tering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 3,
pp. 1412–1424, Jul. 2024.

[7] A. Bifet, S. Maniu, J. Qian, G. Tian, C. He, and W. Fan, “StreamDM:
Advanced data mining in spark streaming,” in Proc. IEEE Int. Conf.
Data Mining Workshop, 2015, pp. 1608–1611.

[8] O. Backhoff and E. Ntoutsi, “Scalable online-offline stream clustering
in apache spark,” in Proc. IEEE 16th Int. Conf. Data Mining Workshops
(ICDMW), Dec. 2016, pp. 37–44.

[9] P. G. L. Cândido, J. A. Silva, E. R. Faria, and M. C. Naldi, “Optimization
algorithms for scalable stream batch clustering with K estimation,” Appl.
Sci., vol. 12, no. 13, p. 6464, 2022.

[10] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for
clustering evolving data streams,” in Proc. 29th Int. Conf. Very Large
Data Bases, Berlin, Germany, 2003, pp. 81–92.

[11] M. Ester et al., “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowl.
Discovery Data Mining, Portland, OR, USA, 1996, pp. 226–231.

[12] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data
streams with evolving fuzzy systems,” Appl. Soft Comput., vol. 11, no. 2,
pp. 2057–2068, Mar. 2011.

[13] R. Hyde, P. Angelov, and A. R. MacKenzie, “Fully online clustering
of evolving data streams into arbitrarily shaped clusters,” Inf. Sci.,
vols. 382–383, pp. 96–114, Mar. 2017.

[14] S. Gong, Y. Zhang, and G. Yu, “Clustering stream data by exploring the
evolution of density mountain,” Proc. VLDB Endowment, vol. 11, no. 4,
pp. 393–405, Dec. 2017.

[15] C. Fahy, S. Yang, and M. Gongora, “Ant colony stream clustering: A
fast density clustering algorithm for dynamic data streams,” IEEE Trans.
Cybern., vol. 49, no. 6, pp. 2215–2228, Jun. 2019.

[16] Y. Li, H. Li, Z. Wang, B. Liu, J. Cui, and H. Fei, “ESA-Stream: Efficient
self-adaptive online data stream clustering,” IEEE Trans. Knowl. Data
Eng., vol. 34, no. 2, pp. 617–630, Feb. 2022.

[17] D. Chen, T. Du, J. Zhou, Y. Wu, and X. Wang, “DWDP-stream: A
dynamic weight and density peaks clustering algorithm for data stream,”
Int. J. Comput. Intell. Syst., vol. 15, no. 1, p. 96, Nov. 2022.

[18] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-based
clustering of data streams at multiple resolutions,” ACM Trans. Knowl.
Discovery Data, vol. 3, no. 3, pp. 1–28, Jul. 2009.

[19] M. Hahsler and M. Bola nos, “Clustering data streams based on shared
density between micro-clusters,” IEEE Trans. Knowl. Data Eng., vol. 28,
no. 6, pp. 1449–1461, Jun. 2016.

[20] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. D. Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Comput. Surveys,
vol. 46, no. 1, pp. 1–31, 2013.

[21] A. Amini, T. Y. Wah, and H. Saboohi, “On density-based data streams
clustering algorithms: A survey,” J. Comput. Sci. Technol., vol. 29, no. 1,
pp. 116–141, Jan. 2014.

[22] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”
Ann. Data Sci., vol. 2, no. 2, pp. 165–193, Jun. 2015.

[23] H.-L. Nguyen, Y.-K. Woon, and W.-K. Ng, “A survey on data
stream clustering and classification,” Knowl. Inf. Syst., vol. 45, no. 3,
pp. 535–569, Dec. 2015.

[24] M. Carnein and H. Trautmann, “EvoStream–evolutionary stream cluster-
ing utilizing idle times,” Big Data Res., vol. 14, pp. 101–111, Dec. 2018.

[25] P. L. Cândido, M. C. Naldi, J. A. Silva, and E. R. Faria, “Scalable data
stream clustering with k estimation,” in Proc. Brazilian Conf. Intell.
Syst., Uberlândia, Brazil, 2017, pp. 336–341.

[26] M. Hassani, P. Spaus, and T. Seidl, “Adaptive multiple-resolution stream
clustering,” in Proc. 10th Int. Conf. Mach. Learn. Data Mining Pattern
Recognit., St. Petersburg, Russia, 2014, pp. 134–148.

[27] M. Hassani, P. Spaus, A. Cuzzocrea, and T. Seidl, “Adaptive stream
clustering using incremental graph maintenance,” in Proc. 4th Int.
Workshop Big Data, Streams Heterogeneous Source Mining, Algorithms,
Syst., Program. Models Appl., Sydney, NSW, Australia, 2015, pp. 49–64.

[28] J. Shao, Y. Tan, L. Gao, Q. Yang, C. Plant, and I. Assent,
“Synchronization-based clustering on evolving data stream,” Inf. Sci.,
vol. 501, pp. 573–587, Oct. 2019.

[29] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in Proc. SIAM Int. Conf. Data
Mining, Bethesda, MD, USA, 2006, pp. 328–339.

[30] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and H.-P. Kriegel, “Density-
based projected clustering over high dimensional data streams,” in Proc.
SIAM Int. Conf. Data Mining, Anaheim, CA, USA, 2012, pp. 987–998.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[31] A. Amini, H. Saboohi, T. Herawan, and T. Y. Wah, “MuDi-stream: A
multi density clustering algorithm for evolving data stream,” J. Netw.
Comput. Appl., vol. 59, pp. 370–385, Jan. 2016.

[32] M. Mousavi, H. Khotanlou, A. A. Bakar, and M. Vakilian, “Varying
density method for data stream clustering,” Appl. Soft Comput., vol. 97,
Dec. 2020, Art. no. 106797.

[33] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,”
in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Jose, CA, USA, Aug. 2007, pp. 133–142.

[34] L. Tu and Y. Chen, “Stream data clustering based on grid density and
attraction,” ACM Trans. Knowl. Discovery Data, vol. 3, no. 3, pp. 1–27,
Jul. 2009.

[35] Q. Qian, C.-J. Xiao, and R. Zhang, “Grid-based data stream clustering
for intrusion detection,” Int. J. Netw. Secur., vol. 15, no. 1, pp. 1–8,
2013.

[36] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[37] H. Averbuch-Elor, N. Bar, and D. Cohen-Or, “Border-peeling clustering,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 7, pp. 1791–1797,
Jul. 2020.

[38] M. Du, R. Wang, R. Ji, X. Wang, and Y. Dong, “ROBP a robust border-
peeling clustering using Cauchy kernel,” Inf. Sci., vol. 571, pp. 375–400,
Sep. 2021.

[39] J. Tobin and M. Zhang, “DCF: An efficient and robust density-based
clustering method,” in Proc. IEEE Int. Conf. Data Mining (ICDM),
Auckland, New Zealand, Dec. 2021, pp. 629–638.

[40] R. Li, X. Yang, X. Qin, and W. Zhu, “Local gap density for clustering
high-dimensional data with varying densities,” Knowledge-Based Syst.,
vol. 184, Nov. 2019, Art. no. 104905.

[41] C. N. Mavridis and J. S. Baras, “Online deterministic annealing for
classification and clustering,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 10, pp. 7125–7134, Oct. 2023.

[42] Y. Liu, X. Fan, W. Li, and Y. Gao, “Online passive-aggressive active
learning for trapezoidal data streams,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 10, pp. 6725–6739, Aug. 2023.

[43] I. Škrjanc, G. Andonovski, J. A. Iglesias, M. P. Sesmero, and A. Sanchis,
“Evolving Gaussian on-line clustering in social network analysis,” Exp.
Syst. Appl., vol. 207, Nov. 2022, Art. no. 117881.

[44] L. L. Minku and X. Yao, “DDD: A new ensemble approach for dealing
with concept drift,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 4,
pp. 619–633, Apr. 2012.

[45] H. Yu, W. Liu, J. Lu, Y. Wen, X. Luo, and G. Zhang, “Detecting group
concept drift from multiple data streams,” Pattern Recognit., vol. 134,
Feb. 2023, Art. no. 109113.

[46] F. Fedeli, A. M. Metelli, F. Trovò, and M. Restelli, “IWDA: Impor-
tance weighting for drift adaptation in streaming supervised learning
problems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 10,
pp. 6813–6823, Jul. 2023.

[47] G. Andonovski and I. Škrjanc, “Evolving clustering algorithm based
on average cluster distance–eCAD,” in Proc. IEEE Int. Conf. Evolving
Adapt. Intell. Syst. (EAIS), May 2022, pp. 1–5.

[48] I. Škrjanc, “Cluster-volume-based merging approach for incrementally
evolving fuzzy Gaussian clustering—eGAUSS+,” IEEE Trans. Fuzzy
Syst., vol. 28, no. 9, pp. 2222–2231, Sep. 2020.

[49] I. Škrjanc, J. A. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F.
Gomide, “Evolving fuzzy and neuro-fuzzy approaches in clustering,
regression, identification, and classification: A survey,” Inf. Sci., vol. 490,
pp. 344–368, Jul. 2019.

[50] L. Breiman, W. Meisel, and E. Purcell, “Variable kernel estimates of
multivariate densities,” Technometrics, vol. 19, no. 2, p. 135, May 1977.

[51] D. Cheng, Q. Zhu, J. Huang, Q. Wu, and L. Yang, “Clustering with
local density peaks-based minimum spanning tree,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 2, pp. 374–387, Feb. 2021.

[52] Y. Zhao and G. Karypis, “Empirical and theoretical comparisons of
selected criterion functions for document clustering,” Mach. Learn.,
vol. 55, no. 3, pp. 311–331, Jun. 2004.

[53] H. Kremer et al., “An effective evaluation measure for clustering on
evolving data streams,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2011, pp. 868–876.

Jiarui Sun received the B.S. degree from Jiangsu
Normal University, Xuzhou, China, in 2019, where
he is currently pursuing the master’s degree with the
School of Computer Science and Technology.

His research interests include big data analysis and
data stream clustering.

Mingjing Du (Member, IEEE) received the Ph.D.
degree in computer science from China University
of Mining and Technology, Xuzhou, China, in 2018.

He is currently an Associate Professor with
the School of Computer Science and Technology,
Jiangsu Normal University, Xuzhou. His research
interests include cluster analysis and three-way
decisions. For more information, see https://
dumingjing.github.io/.

Chen Sun is currently pursuing the bachelor’s
degree with the School of Computer Science and
Technology, Jiangsu Normal University, Xuzhou,
China.

His research interests include three-way clustering
and artificial intelligence in education.

Yongquan Dong received the Ph.D. degree in
computer science from Shandong University, Jinan,
China, in 2010.

He is currently a Professor with the School of
Computer Science and Technology, Jiangsu Normal
University, Xuzhou, China. His research interests
include web information integration and web data
management.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 08,2024 at 23:46:34 UTC from IEEE Xplore. Restrictions apply.

