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a b s t r a c t

The increasing amount of multivariate time series (MTS), coupled with scarce labeled samples, 

has driven the development of unsupervised anomaly detection. While contrastive learning has 

shown promise in learning discriminative representations, existing contrastive learning-based MTS 

anomaly detection methods still suffer from limited representation power and inadequate discrim-

ination ability. In this paper, we propose a novel model, graph-based dual-contrastive represen-

tation learning for detecting anomalies in multivariate time series, called GDCMAD. GDCMAD 

first constructs two relational graphs for capturing inter-variable and temporal dependencies then 

integrates an improved Kolmogorov–Arnold network (KAN)-based attention mechanism into a re-

construction framework. Additionally, it incorporates an LSTM-based external contrastive learning 

module to further enhance the separation between normal and abnormal patterns. Experiments 

on six public datasets show that GDCMAD achieves better performance than nine state-of-the-art 

methods in detecting anomalies, confirming its effectiveness for MTS data. To access the source 

code of GDCMAD, please visit the repository located at https://github.com/Du-Team/GDCMAD.

1. Introduction

Anomaly detection plays an essential role in identifying outliers that deviate significantly from the majority of data [1]. This task 

can involve a variety of data types, including images, videos, and time series. Time series data, in particular, receives significant 

attention because of its inherent temporal nature [2]. A time series comprises data points ordered chronologically [3]. Often, these 

data points originate from multiple sensors, resulting in complex multivariate time series (MTS) [4]. Compared to univariate time 

series, MTS data is more intricate and diverse, rendering anomaly detection more complex. Anomalies in MTS include not only 

temporal anomalies (patterns within a single series) but also inter-variable anomalies (unusual interactions between variables), as 

illustrated in Fig. 1. Traditional anomaly detection methods often focus on temporal dependencies while neglecting inter-variable 

relationships. Furthermore, labeling multiple types of anomalies in multivariate data requires higher human labor costs, creating a 

significant barrier for supervised and semi-supervised learning methods that depend on large labeled datasets.

Recently, unsupervised learning has become a mainstream approach for MTS anomaly detection. With the rapid advancement 

of deep learning, research has shifted toward techniques that can automatically learn and capture deep features from data. Among 

these, reconstruction-based techniques have been widely adopted. The fundamental concept involves using models to identify the
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Fig. 1. Diagram of two kinds of MTS anomalies. Temporal anomalies: points deviate from their expected temporal dependencies, such as the curve sharply declining 

instead of following a smooth trend, highlighted by the green circles within the red-shaded area on the right. Inter-variable anomalies: the expected relationships 

between variables are disrupted, such as the abnormal change in the fifth dimension deviating from its typical parallel movement with the fourth dimension, highlighted 

by blue circles in the red-shaded area on the right.

distribution patterns of representations within normal time series data. Meanwhile, contrastive learning has demonstrated its effec-

tiveness in enhancing representation learning across various domains. As a result, recent research increasingly focuses on combining 

reconstruction-based approaches with contrastive learning to more effectively capture the intricate relationships within MTS data 

[5,6]. 

Despite the significant progress of the reconstruction methods based on contrastive learning, existing methods still face two 

major challenges: limited data representation and insufficient discriminative ability. Regarding representation capabilities, many 

methods primarily focus on extracting local temporal and inter-variable dependencies, neglecting the comprehensive capture of global 

features. Moreover, while Transformer-based models have shown effectiveness across various domains, their attention mechanisms 

are underexplored, restricting the models’ representational ability in MTS data. In terms of discriminative ability, existing contrastive 

learning-based methods often fail to fully leverage the learned representations due to inadequate alignment between the raw data and 

the learned features. This misalignment hampers the ability to capture meaningful distinctions, resulting in insufficient differentiation 

between normal and abnormal patterns and limiting the model’s discriminative power.

A graph-based dual-contrastive representation learning method for MTS anomaly detection, called GDCMAD, is proposed to 

address these issues. In detail, we embed a graph-based contrastive learning module within the reconstruction framework and subse-

quently add an LSTM-based external contrastive learning module, establishing a dual mechanism that improves both representation 

learning and discrimination capabilities. More specifically, we introduce a graph contrastive learning module into the autoencoder 

architecture. This module transforms multivariate time series into two graph structures from two distinct perspectives (temporal 

dependency and variable interaction), employs two graph neural networks to extract features from these perspectives, and uses the 

different features extracted from the same sample as positive pairs in contrastive learning to learn richer representations. Additionally, 

we design an attention mechanism based on an improved Kolmogorov-Arnold network (KAN) [7] and incorporate it into the autoen-

coder structure to improve the model’s representation ability for time series. Finally, we design an LSTM-based external contrastive 

learning module, where raw and reconstructed data are paired and fed into the module. This brings normal data closer while pushing 

anomalous data farther apart, amplifying the distinction between the two and improving anomaly detection accuracy.

This paper is contributed as follows:

• We propose GDCMAD, an innovative unsupervised anomaly detection framework in MTS, integrating an improved autoencoder

architecture and an external contrastive learning module, to enhance anomaly detection performance.

• We develop an autoencoder architecture that introduces a dual-branch graph contrastive learning module and an improved

KAN-based attention mechanism to effectively capture complex relationships and features in MTS.

• We design an external contrastive learning module that leverages pairs of raw data and their reconstructed counterparts to

optimize the separation between normal and anomalous patterns, thereby enhancing the model’s discriminative power. 

2. Related work

In this section, two key topics relevant to this paper are briefly presented: deep MTS anomaly detection, and contrastive learning. 

2.1. Deep multivariate time series anomaly detection

There is a surge of research interest in deep MTS anomaly detection due to the excellent performance of deep learning methods 

for data representation. Among them, reconstruction-based methods are more widely adopted. A basic idea behind these techniques 

involves training a model to understand the distribution within normal time series data, which is then used to reconstruct incoming 

data. Anomalies are identified by measuring the reconstruction error, which indicates significant deviations between the reconstructed 

data and the raw data. An encoder-decoder structure is often used for such methods. OmniAnomaly [8] utilizes random variable 

concatenation and other strategies to uncover the latent data distribution. However, it primarily emphasizes the temporal relationships 

in time series, with less focus on the interactions across feature dimensions. To address this issue, MSCRED [9] assesses the condition of 

multi-layered architectures across diverse timescales through the innovative development of a multi-scale signature matrix. In addition 

to this, it effectively utilizes convolutional encoders to encode feature relationships simultaneously and a custom-designed network to 

detect temporal patterns. In contrast, MEGA [10] incorporates the discrete wavelet transform into an autoencoder framework, which
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is used to break down data into separate frequency components before reconstructing them. However, due to the use of fixed wavelet 

basis functions, the method tends to focus more on localized temporal features, which may limit its ability to effectively capture global 

characteristics of time series. MST–GAT [5] leverages a spatiotemporal convolutional network and a multimodal graph attention 

network, offering an alternative approach. The combination of the two aims to capture the spatio-temporal dependencies in MTS. 

Yet, its reliance on a single reconstruction error metric hampers its ability to differentiate between normal and anomalous patterns 

with similar error profiles. MGDRF [11] employs a multi-grain mask approach for extracting semantic features across different levels 

in MTS. Moreover, it effectively extracts different semantic features at various levels by combining a hierarchy of loss functions that 

leverage both receptive field principles and model-based approaches. Drawing on ensemble learning, MGDRF further integrates the 

results from different granularity dynamic receptive fields to delve into the interactive features between different granularity MTS. 

However, ensemble learning may inadvertently reduce discriminative power due to feature redundancy or conflicts.

2.2. Contrastive learning

Contrastive learning is a self-supervised learning method that improves performance by making the representation consistent 

through appropriate data transformations. The InfoNCE [12] method achieves contrastive learning by bringing the positive samples 

closer together and pulling the negative samples away from each other in the same projection space. However, the introduction of 

negative samples may introduce uncertainty and lead to performance degradation [13]. To solve this problem, BYOL [14] proposes a 

novel contrastive learning framework. The framework is characterized by the fact that it does not use negative samples and can bring 

similar features automatically closer together in the projection space while keeping non-similar features automatically away. Graph 

contrastive learning demonstrates significant potential for non-Euclidean data representation. Chen et al. [15] propose a predictive 

task to augment graph self-supervised contrastive learning. Hassani et al. [16] learn node/graph representations by contrasting 

structural views. Zhu et al. [17] design topology- and semantics-enhanced strategies to optimize representation learning.

However, none of the above methods focuses on time-series studies. MGCLAD [6] proposes a reconstruction-based multiview 

contrastive learning framework for modeling temporal context and capturing dependencies between signals. COCA [13], on the other 

hand, employs a contrastive learning strategy designed to address with the normality assumption and one-class classification prob-

lems. This framework treats the raw data representations and their reconstructed representations as positive pairs without negative 

samples. Furthermore, COCA tailors a contrastive loss function for one-class classification by integrating positive example pairs. 

Although specifically designed for time series, it primarily emphasizes temporal dependency modeling and lacks an explicit mecha-

nism for capturing cross-variable interactions. The recently proposed DCdetector [18] learns permutation-invariant representations 

through a dual-branch attention structure (patch-wise and in-patch attention networks), combined with channel-independent patch 

methods to enhance local semantic features. Its multi-scale attention design effectively alleviates information loss during time series 

patching operations, while instance normalization strategies reduce model complexity and overfitting risks, providing new insights 

for contrastive learning applications in temporal anomaly detection.

This paper is different from existing research in several ways. Firstly, we develop an attentional mechanism incorporating improved 

KAN in the contrastive learning module of the autoencoder, which helps our method capture data features more comprehensively. 

Secondly, we add an external contrastive learning module, which not only enhances the differential association between the raw 

and reconstructed data but also effectively reduces the additional uncertainty that may arise from contrastive learning based on data 

augmentation.

3. Preparatory work

Before detailing the model, we present the notations and explain the fundamentals of two key components: graph neural networks 

and Kolmogorov-Arnold networks.

3.1. Notation descriptions

Define the multivariate time series as a matrix 𝑿 ∈ R 

𝑇×𝑀 , where each row 𝑿 𝑡⋅ 

= [𝑥 𝑡,1 

, 𝑥 𝑡,2 

,… , 𝑥 𝑡,𝑀 

] ∈ R 

𝑀 represents a data point 

at time 𝑡, denoted as 𝒙 𝑡 

. Each column 𝑿 ⋅𝑖 

= [𝑥 1,𝑖 

, 𝑥 2,𝑖 

,… , 𝑥 𝑇 ,𝑖 

] 

⊤ ∈ R 

𝑇 represents the 𝑖-th univariate time series across all time steps,

denoted as 𝒇 𝑖 

. Here, 𝑇 denotes the timestamp length, and 𝑀 denotes the dimensional size of each point [19,20].

A test time series is utilized with the length of ̂ 𝑇 . The complete testing results for each point in the dataset are expressed as

𝒚 = [𝑦 1 

, 𝑦 2 

,… , 𝑦𝑇̂ 

] 

⊤ . The testing result at a specific time 𝑡, denoted as 𝑦 𝑡 

, takes a value in {0, 1}, where 1 indicates an anomaly. 

Table 1 provides a detailed overview of the notations and corresponding descriptions employed throughout this paper.

3.2. Graph neural network

In recent years, graph structure learning has received more and more attention because of its great benefit to the learning of 

dependencies between variables. Graph neural network (GNN) generates an embedded representation of a node by using node infor-

mation in a graph. Its core process can be summarized in three steps: aggregation, update, and loop. The aggregation step evaluates 

the characteristics of a node by integrating information from neighboring nodes. The update step, on the other hand, fuses the aggre-

gated information obtained in the aggregation step with its node information to generate the updated node features. The loop step 

then implies that the above two steps are repeated until each node in the graph can effectively establish connections with all other 

nodes.
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Table 1 

Summary of main notations.

Notations Descriptions

𝑇 

𝒙 𝑡 

𝒇 𝑖 

𝑀 

𝐾 

𝜺 

𝑦 𝑡 

𝒚 

𝑺 𝑡 

𝑾 ′ 

 𝑡
𝒁 

𝑾 ℎ𝑜𝑟 

, 𝑾 𝑣𝑒𝑟
𝒛 ,ℎ𝑜𝑟 𝒛𝑣𝑒𝑟 , 𝒛 𝑢 

, 𝒛 𝑙
𝑒

The timestamp length 

The data point at time step 𝑡 

The vector of the 𝑖 𝑡ℎ 

dimension of the input data 

The dimension sizes for data points 

The context window length 

The minor constancy vector 

The test result of a data point at time step 𝑡 

The test result of each data point of the test data 

The anomaly scores of x 𝑡 

The reconstructed window data at time step 𝑡
The latent variable 

Two input transformations for the contrastive learning module

The projection feature vectors generated by the contrastive learning module

The training epoch

Specifically, we define a graph 𝑮 = (𝑽 , 𝑬, 𝑭 ), where 𝑽 denotes the set of nodes, 𝑬 represents the set of edges, and 𝑭 represents 

the set of features of the nodes. Suppose the vector of node 𝑖 in layer 𝑙 is represented by 𝒉 

𝑙 

𝑖. The aggregation and update process can 

be represented as follows:

𝒂 

𝑙
𝑵 𝑖 

= 𝐴𝑔𝑔(𝒉𝑙−1𝑗 ), 𝑗 ∈ 𝑵 𝑖 (1)

𝒉 

𝑙
𝑖 = 𝑈𝑝𝑑𝑎𝑡𝑒(𝒉𝑙−1𝑖 ,𝒂𝑙𝑵 𝑖 

), (2)

here, 𝑵 𝑖 

represents the neighboring nodes of node 𝑖 in the graph. 𝐴𝑔𝑔(⋅) refers to the aggregation step, and 𝑈𝑝𝑑𝑎𝑡𝑒(⋅) refers to the 

update step.

3.3. Kolmogorov-arnold network

KAN, as a novel network structure, replaces the traditional multilayer perceptron (MLP) network. Unlike the process of MLP, 

which first performs a linear transformation and then extracts nonlinear features through activation functions, KAN extracts nonlinear 

features directly from the data. The main characteristic of KAN is that it places its activation function at the network edges, and these 

activation functions are learnable and are often parameterized using B-splines. This design allows KAN to exhibit higher accuracy and 

interpretability when dealing with problems such as complex function fitting and partial differential equation solving. The specific 

implementation is given as follows:

𝐾𝐴𝑁(𝒙) = (Φ 𝐿 

◦ ⋅ ⋅ ⋅ ◦Φ 𝑙 

◦ ⋅ ⋅ ⋅ ◦Φ 1 

)𝒙. (3)

where Φ is denoted as layer 𝑙 of KAN. ◦ is represented as a composite mapping𝑙   of Φ and𝑙  Φ𝑙 −1 

, where 2 ≤ 𝑙 ≤ 𝐿.

4. Method

Fig. 2 illustrates that GDCMAD is composed of two parts: an autoencoder with a contrastive learning module and improved 

attentional mechanisms, and an external contrastive learning module involving the raw and reconstructed data. Firstly, the data is 

normalized and subsequently segmented to generate window data, i.e., raw data. These raw data, after being transformed, are input 

into the two branches of the encoder’s contrastive learning module. These branches are designed to model temporal dependencies 

and inter-variable relationships, respectively, and subsequently extract the corresponding projection features. Next, these features 

are fused and concatenated to form latent variables, followed by a decoder generating reconstructed data. In the final step, raw data 

is fed together with the reconstructed data to the external contrastive learning module, which contains two independent LSTMs.

4.1. Preprocessing

Before feeding the data into the model, the data is first normalized and subsequently, the corresponding window data is extracted. 

We will normalize time series 𝑿 as follows:

𝒙 𝑡 ←
𝒙𝑡 − min(𝑿)

𝑚𝑎𝑥(𝑿) − min(𝑿) + 𝜺 

, (4)

where 𝒙 𝑡 

is a data point, min(𝑿) denotes the minimum vector of time series, and max(𝑿) is represented as the maximum vector. 𝜺 

is a small constant vector that prevents any single value in the sequence from making the denominator of the above equation zero, 

ensuring the equation remains calculable.

Then, for each data point 𝒙 𝑡 

at time 𝑡, a context window of length 𝐾 is constructed. The context window starting at time 𝑡 − 𝐾 + 1
until 𝑡 is defined as 𝑾 𝑡 

∈ R 

𝐾×𝑀 . We extract the data for each timestamp within this window and construct the set {𝑿 (𝑡−𝐾+1)⋅ 

,… ,𝑿 𝑡⋅ 

}, 
which captures temporal dependencies in MTS. Simultaneously, we extract the data for each variable across the context window and
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Fig. 2. The GDCMAD model.

   { 𝑿̂ ,… , 𝑿̂ }  𝑿̂ = [𝑥 ,… , 𝑥 ]⊤form the set 1
 

 

where
 ( − +1)  

 

, 
 

, capturing inter-variable The,𝑖  dependencies the MTS.⋅ ⋅𝑀 ⋅𝑖 𝑡 𝐾  in𝑡,𝑖     anomaly score 

𝑺 of 𝒙 is calculated based on 𝑾 

 

, subsequently utilized to ascertain the anomalous status of [𝑡 𝑡 𝑡  𝒙 𝑡 

21].

4.2. Autoencoder

To construct more reasonable positive pairs for contrastive learning on multivariate time series, the data is transformed into two 

graph structures from distinct perspectives: temporal dependency and variable interaction. These two graph structures are fed into 

two separate branches of the encoder’s contrastive learning module—one branch utilizes the graph constructed across time steps to 

model temporal dependencies, while the other leverages the graph built across variables to capture inter-variable relationships. The 

features extracted from both branches for the same instance are then treated as a positive pair for contrastive learning. Subsequently, 

these graph representations are turned into corresponding projection features. These features are subsequently concatenated and 

fused to generate latent variables, which are passed to the decoder. The decoder incorporates an attentional mechanism with an 

improved KAN (also applied in the encoder) to generate reconstructed data.

Different from some models that adopt data augmentation-based contrastive learning strategies in autoencoders—which often risk 

disrupting intrinsic temporal features and assume that augmentations introduce no uncertainty—a graph-based contrastive learning 

approach is used. An improved KAN is introduced into the attention mechanism. While the KAN exhibits strong representation
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learning capabilities, its performance on time-series data remains limited. To address this issue, the B-spline curve in KAN is replaced 

with a LeakyReLU activation function.

Encoder. The encoder structure, centered on the graph-based contrastive learning module, leverages dual branches to capture 

temporal and inter-variable dependencies in data.

Input data 𝑾 𝑡 

is first transformed into two distinct forms: 𝑾 ℎ𝑜𝑟 

, representing the cross-time-step representation, and 𝑾 𝑣𝑒𝑟 

,

representing the cross-variable representation. These two data parts are processed by separate GNNs to capture temporal dependencies

and inter-variable relationships. An attention mechanism based on the improved KAN is then applied to capture global information,

producing the projection features 𝒛 ℎ𝑜𝑟 and 𝒛 𝑣𝑒𝑟 

. These features are used to calculate the contrastive learning loss, which drives the

model’s training process.

The process of acquiring 𝒛 ℎ𝑜𝑟 is expressed in the following equation: 

𝑸 ℎ𝑜𝑟 

= 𝑲 ℎ𝑜𝑟 

= 𝐾𝐴𝑁 1 

(𝐺𝑁𝑁 1(𝑾 ℎ𝑜𝑟 

)) (5) 

𝑽 ℎ𝑜𝑟 

= 𝐾𝐴𝑁 2 

(𝐺𝑁𝑁 1 

(𝑾 ℎ𝑜𝑟 

)) (6) 

𝑯 ℎ𝑜𝑟 

= 𝐿𝑁(𝐺𝑁𝑁 1(𝑾 ℎ𝑜𝑟 

) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 1(𝑸 ℎ𝑜𝑟 

,𝑲 ℎ𝑜𝑟 

,𝑽 ℎ𝑜𝑟 

)) (7)

𝒛 ℎ𝑜𝑟 

= 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 1(𝐿𝑁(𝐹 𝐹 1(𝑯 ℎ𝑜𝑟 

) + 𝑯 ℎ𝑜𝑟 

)) (8)

where 𝑸 ℎ𝑜𝑟 

, 𝑲 ℎ𝑜𝑟 

and 𝑽 ℎ𝑜𝑟 

are considered as the query, key, and value. 𝐺𝑁𝑁 1 

(⋅) is responsible for graph structure learning operation. 

𝐹𝐹 1(⋅) is a fully connected network. 𝐾𝐴𝑁 1 

(⋅) and 𝐾𝐴𝑁 2 

(⋅) denote the improved KANs. 𝐿𝑁(⋅) represents a layer normalization 

operation. 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 1 

(⋅, ⋅, ⋅) refers to the attention mechanism. 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 1 

(⋅) represents denoted as projection operation.

Similarly, the acquisition process of 𝒛 𝑣𝑒𝑟 can be shown in the following equation: 

𝑸 𝑣𝑒𝑟 

= 𝑲 𝑣𝑒𝑟 

= 𝐾𝐴𝑁 3 

(𝐺𝑁𝑁 2(𝑾 𝑣𝑒𝑟 

)) (9)

𝑽 𝑣𝑒𝑟 

= 𝐾𝐴𝑁 4 

(𝐺𝑁𝑁 2(𝑾 𝑣𝑒𝑟 

)) (10)

𝑯 𝑣𝑒𝑟 

= 𝐿𝑁(𝐺𝑁𝑁 2(𝑾 𝑣𝑒𝑟 

) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 2(𝑸 𝑣𝑒𝑟 

,𝑲 𝑣𝑒𝑟 

,𝑽 𝑣𝑒𝑟 

)) (11)

𝒛 𝑣𝑒𝑟 = 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 1 

(𝐿𝑁(𝐹 𝐹 2(𝑯 𝑣𝑒𝑟 

) + 𝑯 𝑣𝑒𝑟 

)) (12)

where 𝑸 𝑣𝑒𝑟 

, 𝑲 𝑣𝑒𝑟 

and 𝑽 𝑣𝑒𝑟 

are considered as the query, key, and value. 𝐺𝑁𝑁 2 

(⋅) is responsible for graph structure learning operation. 

𝐹𝐹 2 

(⋅) is a fully connected network. 𝐾𝐴𝑁 3(⋅) and 𝐾𝐴𝑁 4 

(⋅) denote the improved KANs. 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 2 

(⋅, ⋅, ⋅) represents the attention

mechanism.

Subsequently, we use 𝒛 ℎ𝑜𝑟 and 𝒛 𝑣𝑒𝑟 to calculate the loss of contrastive learning. The approach presented in this paper differs from 

traditional contrastive learning strategies, which rely on pairs of positive and negative samples. We mainly refer to BYOL [14], which 

enables efficient learning without the need for large batch sizes by reducing the dependence on massive negative samples. Specific 

loss function formulation reads as follows:

 𝑐𝑙 = 

1
𝑁

𝑁
∑ 

𝑖=1
−

𝒛 

(𝑖)
𝑣𝑒𝑟

‖𝒛(𝑖)𝑣𝑒𝑟‖ 2 

𝒛 

(𝑖)
ℎ𝑜𝑟

‖𝒛(𝑖)ℎ𝑜𝑟‖ 2

. (13)

where 𝑁 denotes the sample number.

Fusion. For successful completion of the subsequent reconstruction task, we need to fuse the projection features 𝒛 ℎ𝑜𝑟 

and 𝒛 𝑣𝑒𝑟 

to 

generate the latent variable 𝒁. This is done as shown below:

𝒁 = 𝐿𝑖𝑛𝑒𝑟(𝐶𝑜𝑛𝑐𝑎𝑡(𝒛 𝑣𝑒𝑟 

, 𝒛 ℎ𝑜𝑟 

)), (14)

where 𝐿𝑖𝑛𝑒𝑟(⋅) is the fully connected layer. 𝐶𝑜𝑛𝑐𝑎𝑡(⋅) is a concatenation operation.

Decoder. After obtaining the latent variable 𝒁, we perform the reconstruction task in the decoder. The decoder contains a module 

with an attention mechanism designed to convert the latent variable 𝒁 into the reconstructed data 𝑾 

′ 

𝑡. The steps are as follows:

𝑸 

′ = 𝑲 

′ = 𝐾𝐴𝑁 5(𝒁) (15)

𝑽 

′ = 𝐾𝐴𝑁 6(𝒁) (16)

𝑯 

′ = 𝐿𝑁(𝒁 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 3 

(𝑸 

′ ,𝑲 

′ ,𝑽 

′ )) (17)

𝑾 

′
𝑡 = 𝐿𝑁(𝐹 𝐹 3(𝑯 

′ ) + 𝑯 

′ ) (18) 

where 𝑸 

′ , 𝑲 

′ , and 𝑽 

′ are considered as the query, key, and value, respectively. 𝐹 𝐹 3 

(⋅) is a fully connected network. 𝐾𝐴𝑁 5 

(⋅) and 

𝐾𝐴𝑁 6(⋅) denote the improved KANs. 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 3 

(⋅, ⋅, ⋅) represents the attention mechanism. 

Then, we can obtain the reconstruction loss corresponding to 𝑾 𝑡 

and 𝑾 ′
𝑡 

:

 𝑟𝑒𝑐𝑜𝑛 = ‖

‖ 

𝑾 𝑡 − 𝑾 

′ 

𝑡
‖

‖

2
𝐹 . (19)

4.3. External contrastive learning

To enhance the accuracy, we introduce an LSTM-based external contrastive learning module. The core idea is to pair the raw 

and reconstructed data and feed them into the module. This strategy brings normal data points closer while pushing anomalous ones 

further apart, thereby amplifying the distinction between normal and abnormal data. The outcome is a more effective separation, 

which directly improves the model’s ability to detect anomalies. Notably, the module can be applied to some data augmentation-based
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methods, mitigating the negative effects of data augmentation, such as the disruption of inherent temporal characteristics and the 

introduction of uncertainty. We also validate this in the subsequent experiments.

This module consists of two different LSTMs in two branches. The specific implementation is as follows:

𝒛 𝑢 = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 2(𝐿𝑆𝑇𝑀 1(𝑾 𝑡 

)) (20)

𝒛 𝑙 

= 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 2(𝐿𝑆𝑇𝑀 2(𝑾 ′
𝑡)), (21)

where 𝒛 𝑢 and 𝒛 𝑙 are referred to as projection features. 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 2 

(⋅) is referred to as projection operation.

Then, we use both to calculate the corresponding contrastive learning loss:

 𝑠𝑐𝑙 = 

1
𝑁

𝑁
∑ 

𝑖=1
−

𝒛 

(𝑖)
𝑢

‖𝒛(𝑖)𝑢 ‖ 2

𝒛 

(𝑖)
𝑙

‖𝒛(𝑖)𝑙 ‖ 2 

. (22)

4.4. Training objective and anomaly detection 

4.4.1. Training objective

After introducing the contrastive learning loss in the encoder, the reconstruction loss, and the external contrastive learning loss, 

we merge these three losses into a final loss function that is used to guide the training process. Specifically:

 =  𝑟𝑒𝑐𝑜𝑛 

+ 𝜆 1 

 𝑐𝑙 

+ 𝜆 2 

 𝑠𝑐𝑙 , (23) 

where 𝜆 1 

and 𝜆 2 

are used as the scaling factors. 

Algorithm 1 shows the whole training process. 

4.4.2. Anomaly detection

After training the model, the model is employed to detect anomalies in the test data, as described in Algorithm 2. Anomaly scores 

are computed as follows:

𝑺 𝑡 

= ‖

‖

‖

̂ 𝑾 𝑡 

− ̂ 𝑾 

′
𝑡
‖

‖

‖

2

𝐹
(24)

where 𝑾̂ 𝑡 

signifies unobserved window data. If their scores surpass the predefined threshold 𝜆, points are deemed abnormal, if not, 

they are regarded as normal [22]. As indicated in the following:

𝑠 𝑎𝑛 = 

{

𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑺 𝑡 ≥ 𝜆
𝑛𝑜𝑟𝑚𝑎𝑙 𝑺 𝑡 < 𝜆

, (25)

𝑦 𝑡 = 

{

1 𝑺 𝑡 ≥ 𝜆
0 𝑺 𝑡 < 𝜆

, (26)

where 𝑠 𝑎𝑛 

represents the anomaly state at the timestamp 𝑡.

Algorithm 1 Training algorithm.

Input: Normal window Dataset  = 

 

𝑾 1 

, ...,𝑾 𝑇 

 

, number epochs 𝑁 𝑒𝑝𝑜𝑐ℎ
Output: Trained GDCMAD 

𝑒 ← 1 

while 𝑒 ≤ 𝑁 𝑒𝑝𝑜𝑐ℎ do

for 𝑡 = 1 to 𝑇 do
𝑾 ℎ𝑜𝑟 

,𝑾 𝑣𝑒𝑟 

← 𝑾 𝑡
𝑯 ℎ𝑜𝑟 

← 𝐿𝑁(𝐺𝑁𝑁 1(𝑾 ℎ𝑜𝑟 

) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 1 

(𝑸 ℎ𝑜𝑟 

,𝑲 ℎ𝑜𝑟 

,𝑽 ℎ𝑜𝑟 

)) 

𝒛 ℎ𝑜𝑟 ← 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 1(𝐿𝑁(𝐹 𝐹 1(𝑯 ℎ𝑜𝑟 

) + 𝑯 ℎ𝑜𝑟 

)) 

𝑯 𝑣𝑒𝑟 

← 𝐿𝑁(𝐺𝑁𝑁 2(𝑾 𝑣𝑒𝑟 

) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 2 

(𝑸 𝑣𝑒𝑟 

,𝑲 𝑣𝑒𝑟 

,𝑽 𝑣𝑒𝑟 

)) 

𝒛 𝑣𝑒𝑟 ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 1(𝐿𝑁(𝐹 𝐹 2(𝑯 𝑣𝑒𝑟 

) + 𝑯 𝑣𝑒𝑟 

))

 𝑐𝑙 ← 

1
𝑁

𝑁
∑ 

𝑖=1
−

𝒛 

(𝑖)
𝑣𝑒𝑟

‖𝒛(𝑖)𝑣𝑒𝑟‖ 2

𝒛 

(𝑖)
ℎ𝑜𝑟

‖𝒛(𝑖)ℎ𝑜𝑟‖ 2 

𝑯 

′ ← 𝐿𝑁(𝒁 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 3(𝑸 

′ ,𝑲 

′ ,𝑽 

′ )) 

𝑾 

′ 

𝑡 ← 𝐿𝑁(𝐹 𝐹 3(𝑯 

′ ) + 𝑯 

′ )
 𝑟𝑒𝑐𝑜𝑛 ← ‖

‖ 

𝑾 𝑡 − 𝑾 

′
𝑡
‖ 

‖ 

2
𝐹

𝒛 𝑢 

← 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 2(𝐿𝑆𝑇𝑀 1 

(𝑾 𝑡 

)) 

𝒛 𝑙 ← 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 2(𝐿𝑆𝑇𝑀 2(𝑾 ′
𝑡))

 𝑠𝑐𝑙 ← 

1
𝑁

𝑁
∑ 

𝑖=1
−

𝒛 

(𝑖)
𝑢

‖𝒛(𝑖) 

𝑢 

‖ 2

𝒛 

(𝑖)
𝑙

‖𝒛(𝑖)𝑙 ‖ 2
 ←  𝑟𝑒𝑐𝑜𝑛 + 𝜆 1 

 𝑐𝑙 

+ 𝜆 2 

 𝑠𝑐𝑙
𝑒 ← 𝑒 + 1

{ }
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Algorithm 2 Testing algorithm.

Input: Test window Dataset ̂ =
{

̂ 𝑾 1 

,… , 𝑾̂ 𝑇 

′ 

} 

, threshold 𝜆

Output: Labels y: 
{ 

𝑦 1 

,… , 𝑦 𝑇 

′ 

}

for 𝑡 = 1 to 𝑇 

′ do
̂ 𝑾 𝑡 

← 𝐷(𝐸(𝑾̂ 𝑡 

))

𝑺 𝑡 

← 

‖

‖

‖

̂ 𝑾 𝑡 

− 𝑾̂ 

′
𝑡
‖

‖

‖

2

𝐹
if 𝑺 𝑡 

≥ 𝜆 then
𝑠 𝑎𝑛 ← 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙
𝑦 𝑡 ← 1

else
𝑠 𝑎𝑛 ← 𝑛𝑜𝑟𝑚𝑎𝑙
𝑦 𝑡 ← 0

Table 2 

Benchmark datasets.

Dataset name Dimension number Train set size Test set size Anomaly ratio (%)

MSL 55 58,317 73,729 10.72

SMD 38 708,405 748,420 4.16

SWaT 51 475,200 449,919 10.72

PSM 25 132,481 87,841 27.8

ASD 19 102,331 51,840 4.61

SMAP 25 135,183 427,617 13.13

4.5. Complexity analysis

Theoretically, the computational complexity of the GDCMAD model is primarily contributed by four core components: data pre-

processing, autoencoder operations, LSTM-based contrastive learning, and loss function computation. The data preprocessing stage

involves the window division and graph construction of multivariate time series: for the input data with dimension M and length 

T, the complexity of the division process with window size K is 𝑂(𝑇 ⋅ 𝑀), and the subsequent construction of the time-dimension 

graph (across time-step dependencies) and the variable-dimension graph (across variable dependencies) has a complexity of 𝑂(𝐾 

2 ) 

and 𝑂(𝑀 

2 ), respectively. In the autoencoder operations, the graph neural network (GNN) handles temporal branching (number of 

nodes 𝑁 𝑡 = 𝐾) and variable branching (number of nodes 𝑁 𝑣 = 𝑀) with a single-layer GNN with a complexity of 𝑂(𝐸 ⋅ 𝑑 + 𝑁 ⋅ 𝑑 

2 ) 

(E is the number of edges, and d is the dimension of the hidden layer). The total complexity for both branching structures sums to 

𝑂((𝐾 

2 +𝑀 

2 )⋅𝑑+(𝐾+𝑀)⋅𝑑 

2 ). The single-head attentional complexity of the improved KAN attentional mechanism in double branching 

is 𝑂(𝑁 

2 ⋅ 𝑑), and the overall realisation 𝑂((𝐾 

2 + 𝑀 

2 ) ⋅ 𝑑). The feature fusion and reconstruction phase consists of projected feature

splicing,a decoding process with complexity 𝑂(𝑑 ⋅ (𝐾 + 𝑀) ⋅ 𝑑) and an attention mechanism in the decoder with a fully connected 

layer of 𝑂(𝐾 ⋅ 𝑀 ⋅ 𝑑). In the LSTM-based contrastive learning, the complexity of a single-layer LSTM for processing two-branch data 

is 𝑂(2 ⋅ 𝐾 ⋅ 𝑀 ⋅ 𝑑), whereas the contrastive loss computation is achieved by projecting the cosine similarity between features with a 

complexity of 𝑂(𝑁 ⋅ 𝑑) (N is the batch size). The total loss function covers the reconstruction loss 𝐿 𝑟𝑒𝑐𝑜𝑛 

, the graph contrastive loss 

𝐿 𝑐𝑙 

and the external contrastive loss 𝐿 𝑠𝑐𝑙 

.Their computational complexities are 𝑂(𝐾 ⋅ 𝑀), 𝑂(𝑁 ⋅ 𝑑) and 𝑂(𝑁 ⋅ 𝑑) respectively, which 

together constitute the final computational load for model training.

5. Experimental results 

5.1. Setup

We employ a total of five datasets in our experiments: Mars Science Laboratory Rover (MSL) [23], Server Machine Dataset (SMD) 

[8], Secure Water Treatment (SWaT) [24], Pooled Server Metrics (PSM) [25], Application Server Dataset (ASD) [26], and Soil Moisture 

Active Passive satellite (SMAP) [23]. A summary of their detailed features is provided in Table 2.

Furthermore, our method’s and baselines’ performance evaluation is conducted using metrics such as F1 

∗ score (F1 

∗ ), F1 score 

(F1), recall (R), and precision (P) [27].

We adopt the following default hyperparameters: The batch size is consistently set to 128 across the training, validation, and test 

datasets. The network model is optimized using the Adam optimizer with an initial learning rate of 10 

−4 . During training, the model 

runs for a maximum of 250 epochs, with early stopping (patience = 5) applied to halt training if performance stagnates. The GNN 

architecture consists of a single layer.
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Table 3 

Performance comparison.

Methods MSL SMD

F1* F1 R P F1* F1 R P

LSTM 0.9189 0.8931 0.9999 0.8500 0.8766 0.8596 0.8682 0.8852

VAE 0.9308 0.9096 0.9897 0.8785 0.8050 0.7763 0.7488 0.8703

LSTM-VAE 0.8899 0.8555 0.9805 0.8147 0.8856 0.8707 0.8764 0.8950

BeatGAN 0.9330 0.9199 0.9743 0.8951 0.8608 0.8525 0.8408 0.8817

USAD 0.9118 0.8866 0.9400 0.8852 0.7766 0.7493 0.7438 0.8124

AMFormer 0.9260 0.9132 0.9960 0.8652 0.7619 0.7343 0.8579 0.6852

COCA 0.9384 0.9217 0.9999 0.8777 0.9223 0.9186 0.9460 0.8997

MGCLAD 0.9308 0.9088 0.9897 0.8785 0.8907 0.8870 0.8741 0.8945

MTGFLOW 0.9163 0.8836 0.9652 0.8721 0.9303 0.9273 0.9346 0.9261

GDCMAD 0.9507 0.9423 0.9804 0.9229 0.9523 0.9496 0.9591 0.9455

Methods SWaT PSM

F1* F1 R P F1* F1 R P

LSTM 0.5912 0.5912 0.5426 0.4387 0.8780 0.8780 0.8971 0.9597

VAE 0.8444 0.8444 0.7604 0.9494 0.8400 0.8400 0.8319 0.8483

LSTM-VAE 0.8195 0.8195 0.7190 0.9526 0.9201 0.9201 0.9193 0.9209

BeatGAN 0.6723 0.6723 0.8310 0.5644 0.8627 0.8627 0.8193 0.9111

USAD 0.8619 0.8619 0.8110 0.9196 0.8877 0.8877 0.8130 0.9775

AMFormer 0.5410 0.5410 0.7488 0.4235 0.9613 0.9613 0.9628 0.9599

COCA 0.9441 0.9441 0.9364 0.9520 0.9477 0.9477 0.9326 0.9633

MGCLAD 0.9493 0.9493 0.9334 0.9658 0.9560 0.9560 0.9296 0.9839

MTGFLOW 0.9310 0.9310 0.9523 0.9107 0.9339 0.9339 0.9340 0.9460

GDCMAD 0.9501 0.9501 0.9232 0.9787 0.9666 0.9666 0.9674 0.9657

Methods ASD SMAP

F1* F1 R P F1* F1 R P

LSTM 0.8455 0.8128 0.7763 0.9281 0.8371 0.7723 0.9922 0.7240

VAE 0.5771 0.4793 0.5944 0.5608 0.8367 0.773 0.9821 0.7288

LSTM-VAE 0.8718 0.8507 0.8607 0.8833 0.8506 0.7917 0.988 0.7468

BeatGAN 0.8311 0.8092 0.8135 0.8494 0.8271 0.7757 0.951 0.7318

USAD 0.6027 0.4890 0.5384 0.6842 0.8312 0.7678 0.9938 0.7144

AMFormer 0.7460 0.7244 0.8342 0.6746 0.8459 0.8097 0.9919 0.7374

COCA 0.8249 0.8032 0.8947 0.7653 0.8693 0.8142 0.9903 0.7746

MGCLAD 0.9251 0.9177 0.9176 0.9326 0.8462 0.7909 0.9956 0.7358

MTGFLOW 0.9082 0.8995 0.9055 0.9110 0.8464 0.7866 0.9847 0.7421

GDCMAD 0.9304 0.9248 0.9242 0.9367 0.9071 0.8858 0.9987 0.8310

5.2. Overall performance

In real-world manufacturing environments, abnormal events typically do not emerge singly but instead persist for a duration, 

creating sustained periods of irregularity[27]. Consequently, our method focuses on the behavior of data over extended intervals 

rather than the performance at individual moments. To address this issue, we employ the point adjustment technique [27] for model 

optimization. Upon the detection of an anomaly across a specific time period, that interval is designated as the anomaly period, with 

the contained data points being labeled as abnormal points.

For the assessment of our method’s comprehensive performance, we compare it with baseline methods such as LSTM [28], VAE 

[29], LSTM-VAE [30], BeatGAN [31], USAD [27], AMFormer [32], COCA [13], MGCLAD [6], and MTGFLOW [33]. To ensure a 

fair comparison, although different methods may propose various threshold determination strategies, for each method, we unify the 

approach by selecting the threshold that delivers the optimal performance.

Table 3 shows the results for all methods across the MSL, SMD, SWaT, PSM, ASD, and SMAP datasets. Bolding indicates optimal 

values, and underlining indicates sub-optimal values. Our method outperforms the other methods on all datasets. In particular, it 

outperforms the F1 scores of the optimal benchmark by 2.2 %, 2.4 %, and 8.8 % for the MSL, SMD, and SMAP datasets, respectively. 

This is mainly due to the more comprehensive consideration of global features in our method. In addition, our method is significantly 

different from those autoencoder frameworks (e.g., COCA, MGCLAD) that rely solely on reconstruction mechanisms. In our method, 

we introduce an external contrastive learning module that imposes specific constraints in processing both raw and reconstructed 

data. This design not only improves the overall effect of data reconstruction but also achieves mutual proximity between normal 

data points. Meanwhile, abnormal data points are pushed further away from each other. In this way, we successfully enhance the 

model’s anomaly detection capability. Additionally, it also mitigates to some extent the problem of uncertainty that may arise from 

contrastive learning based on data augmentation.

Moreover, we perform the Nemenyi test at a 0.05 significance level for a rigorous performance comparison (Critical Difference, 

CD = 5.5301). As depicted in the Fig. 3, the most critical finding is that GDCMAD is statistically superior to the majority of the
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Fig. 3. Significance testing.

Table 4 

F1-score of different methods across multiple random seeds.

Methods MSL SMD SWaT PSM ASD SMAP

LSTM 0.8836 ± 0.0134∙ 0.8484 ± 0.0159∙ 0.5830 ± 0.0117∙ 0.8761 ± 0.0028∙ 0.8022 ± 0.0150∙ 0.7722 ± 0.0002∙
VAE 0.8919 ± 0.0251∙ 0.7689 ± 0.0105∙ 0.8422 ± 0.0031∙ 0.8298 ± 0.0145∙ 0.4746 ± 0.0066∙ 0.7647 ± 0.0117∙
LSTM-VAE 0.8463 ± 0.0130∙ 0.8662 ± 0.0064∙ 0.8064 ± 0.0185∙ 0.9181 ± 0.0028∙ 0.8439 ± 0.0096∙ 0.7917 ± 0.0001∙
BeatGAN 0.9193 ± 0.0009∙ 0.8448 ± 0.0109∙ 0.6590 ± 0.0189∙ 0.8623 ± 0.0006∙ 0.8062 ± 0.0042∙ 0.7641 ± 0.0164∙
USAD 0.8862 ± 0.0006∙ 0.7443 ± 0.0071∙ 0.8618 ± 0.0001∙ 0.8809 ± 0.0096∙ 0.4842 ± 0.0069∙ 0.7602 ± 0.0108∙
AMFormer 0.8995 ± 0.0194∙ 0.7153 ± 0.0269∙ 0.5398 ± 0.0017∙ 0.9607 ± 0.0009◦ 0.7104 ± 0.0199∙ 0.7954 ± 0.0203∙
COCA 0.9189 ± 0.0040∙ 0.9174 ± 0.0018∙ 0.9418 ± 0.0033∙ 0.9408 ± 0.0098∙ 0.7898 ± 0.0190∙ 0.7976 ± 0.0235∙
MGCLAD 0.8979 ± 0.0154∙ 0.8724 ± 0.0024∙ 0.9473 ± 0.0029◦ 0.9533 ± 0.0039∙ 0.9169 ± 0.0011∙ 0.7717 ± 0.0272∙
MTGFLOW 0.8789 ± 0.0067∙ 0.9259 ± 0.0020∙ 0.9264 ± 0.0066∙ 0.9250 ± 0.0126∙ 0.8868 ± 0.0180∙ 0.7848 ± 0.0025∙
GDCMAD 0.9409 ± 0.0020 0.9490 ± 0.0009 0.9492 ± 0.0013 0.9633 ± 0.0047 0.9251 ± 0.0004 0.8738 ± 0.0170

compared methods. Specifically, its average rank (1.0000) significantly surpasses those of LSTM-VAE (6.0000), AMFormer (6.1667), 
BeatGAN (6.6667), LSTM (7.3333), VAE (7.8333), and USAD (8.0000), as the differences in rank all exceed the CD value. While the 

connecting bar indicates no statistically significant difference between GDCMAD and other high-performing methods like COCA, 

MGCLAD, and MTGFLOW, which collectively form the top tier, it is crucial to highlight that GDCMAD is the only model in this elite 

group to maintain a significant statistical advantage over all lower-ranked models (from LSTM-VAE to USAD). This distinction firmly 

establishes its superior and stable performance, cementing its leading position.

5.3. Robustness across random seeds

To ensure that the superior performance of the proposed GDCMAD model is not attributable to randomness, we conduct additional 

experiments by running all methods with five random seeds across six benchmark datasets. For each dataset, every model is executed 

five times under different random seeds, and the mean and standard deviation of the F1-score are reported in Table 4. Our proposed 

GDCMAD consistently achieves the highest mean F1 scores across all datasets, accompanied by notably small standard deviations, 

underscoring its reliability and insensitivity to random seed variations.

To further evaluate whether the observed performance differences are statistically significant, we conduct paired two-tailed t-

tests at a 0.05 significance level between GDCMAD and each competing method. A solid circle ∙ denotes that GDCMAD is statistically 

superior to the compared method, while an open circle ◦ indicates no significant difference. Out of the 54 statistical comparisons 

conducted (9 baselines across 6 datasets), GDCMAD demonstrates statistically significant superiority in 52 cases, representing 96.3 % 

of the total comparisons. This highlights that its improvements are consistent and not incidental.

Overall, these results confirm that GDCMAD not only surpasses existing methods in terms of average performance but also exhibits 

remarkable stability across different random seeds. This robustness further underscores the reliability and generalizability of our model 

in time series anomaly detection tasks.

5.4. Visualization of anomaly scores

For further exploration of the different methods’ performance, we provide a detailed analysis of their normalized anomaly scores 

computed on the SMD dataset. Fig. 4 illustrates the distribution of anomaly scores for LSTM, VAE, LSTM-VAE, BeatGAN, USAD, 

AMFormer, COCA, MGCLAD, MTGFLOW and our GDCMAD. In these plots, the shaded areas indicate that the corresponding moments 

are labeled as anomalies.

In Fig. 4(a) and (h), although they improve precision and recall due to their temporal feature extraction capability, the scores of 

their normal and abnormal points are too close to the thresholds for effective differentiation, which also affects their performance. 

Inspecting Fig. 4(b), VAE lacks in-depth mining of time series dependencies, resulting in many normal data points being incorrectly 

classified as abnormal, which directly affects its performance. From Fig. 4(c)–(g), it can be seen that the model based on the autoen-

coder architecture does not impose appropriate constraints when dealing with the raw data and its reconstructed data. This absence 

leads to an obvious consequence: anomaly scores for data points are generally high. High anomaly scores indicate that there is a 

significant difference between the raw and reconstructed data, in other words, the reconstruction process produces larger errors.
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Fig. 4. The visualization of the anomaly score.

This leads to a degradation in performance. On the contrary, Fig. 4(j) demonstrates the excellent performance of our method in data 

reconstruction, where the gap between scores for abnormal and normal points is larger than that in Fig. 4(i) and other methods. This 

larger difference helps to distinguish normal and abnormal data more effectively, which in turn improves the detection performance.
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Fig. 5. Effect of parameters on the F1 score. Each figure represents one parameter.

5.5. Effect of parameters

In our experiments, we evaluate the impact of different parameters on the performance of the method, including two key 

parameters: window size and dimension size of the latent variable.

Window size. This parameter is tested across six datasets. Fig. 5(a) displays the findings from the six experimental sets for different 

window sizes. It is observed that the experimental results of MSL and ASD datasets fluctuate more as the window size is enlarged, but 

in general, the F1 scores of each dataset decrease as the window size increases. This is mainly due to larger window sizes allowing 

small segments of anomalous data to be included in longer sequences, which makes them difficult to detect. Nonetheless, F1 scores 

of GDCMAD remain at a high level, indicating its excellent performance in handling long sequences.

The dimension size of the latent variable. Fig. 5(b) shows the six groups of experimental results under different dimension sizes 

of the latent variables. Observations show that the experimental results of MSL and SWaT datasets fluctuate greatly as the dimension 

size increases, but in general, F1 scores for each dataset show a tendency to increase and subsequently decrease. As the dimension 

size begins to increase, F1 scores rise, and we speculate that this may be because the model has not learned enough features from 

the sequential data. However, when the value of the dimension size continues to increase, we notice that the F1 score begins to show 

a decreasing trend. A possible reason for this decline is that the learned latent variable features begin to contain more and more 

redundant information. This redundant information adversely affects the data reconstruction process, and it may interfere with the 

extraction of key features by the model. As a result, the precision of reconstruction drops, which subsequently results in a decline in 

overall performance.

5.6. Ablation study

The following two ablation experiments are conducted to assess the contribution of key modules to anomaly detection performance: 

firstly, by removing or replacing the three core components, we create three different variants. Secondly, to accurately demonstrate 

the role of the KAN module in the detection behavior of time series and how optimizations we implemented have enhanced detection, 

we create two variants of the model for comparative analysis.

Comparisons are made between our original method and three variants: w/o CL, in which the external contrastive learning module 

is removed from the model, w/o GTime, which is aimed at the extraction of temporal dependencies where we use LSTM instead of 

graph structure learning, and w/o A, which removes the attention mechanism when adding global features. The details are shown in 

Table 5.

Concerning the impact of the external contrastive learning module, we can gain some insights from the experimental results of the 

w/o CL variant. When removing this module, we observe a decrease in the model’s average performance, with an average decrease of 

1.7 %. Especially on the PSM dataset, the model’s performance degradation is particularly significant, approaching 4 %. The results 

illustrate that it is crucial to impose specific constraints when processing both raw and reconstructed data. The constraints not only 

help maintain the quality of data reconstruction but also promote the proximity of normal data points to one another. At the same 

time, the constraints also enable abnormal data points to be more clearly distinguished from normal data. Such a treatment is essential 

for enhancing the overall performance.

The experimental results of the w/o GTime variant provide important insights when we evaluate the role of graph structure 

learning in extracting temporal dependencies. Specifically, when we replace the graph structure learning module with a traditional 

LSTM network, the model shows a decrease in average performance on six different datasets, with an average decrease of 2.3 %. 

Especially on the SMAP dataset, the performance degradation is particularly significant, reaching 4 %. The results clearly show 

that graph structure learning has a more comprehensive ability to capture temporal dependencies between data points, which can 

significantly enhance model performance.

In exploring the effectiveness of the attention mechanism for acquiring global features, the experimental results of the w/o A 

variant provide us with some insights. Specifically, when we remove the attention mechanism from the model, we find a decrease 

in average performance on all six datasets, with an average decrease of 1.6 %. Notably, the performance degradation is particularly 

noticeable on the SMAP dataset, which is close to 4.1 %. We analyze that the absence of the attention mechanism may lead to an 

incomplete capture of global features by the model. This incomplete capture limits the effectiveness of the contrastive learning module
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Table 5 

Variants Comparison.

Methods MSL

CL Graph Time Attention F1 R P

w/o CL
√ √ 

0.9333 0.9804 0.9103

w/o GTime
√ √ 

0.9191 0.9804 0.8956

w/o A
√ √

0.9167 0.9999 0.8715

Ours
√ √ √

0.9423 0.9804 0.9229

Methods SMD

CL Graph Time Attention F1 R P

w/o CL
√ √ 

0.9468 0.9615 0.9382

w/o GTime
√ √ 

0.9448 0.9626 0.9330

w/o A
√ √

0.9476 0.9657 0.9347

Ours
√ √ √

0.9496 0.9591 0.9455

Methods SWaT

CL Graph Time Attention F1 R P

w/o CL
√ √ 

0.9455 0.9350 0.9562

w/o GTime
√ √ 

0.9364 0.9350 0.9377

w/o A
√ √

0.9381 0.9350 0.9412

Ours
√ √ √

0.9501 0.9232 0.9787

Methods PSM

CL Graph Time Attention F1 R P

w/o CL
√ √ 

0.9297 0.8970 0.9648

w/o GTime
√ √ 

0.9306 0.8956 0.9684

w/o A
√ √

0.9618 0.9668 0.9568

Ours
√ √ √

0.9666 0.9674 0.9657

Methods ASD

CL Graph Time Attention F1 R P

w/o CL
√ √

0.9187 0.9038 0.9446

w/o GTime
√ √

0.9168 0.9038 0.9410

w/o A
√ √ 

0.9130 0.9038 0.9338

Ours
√ √ √

0.9248 0.9242 0.9367

Methods SMAP

CL Graph Time Attention F1 R P

w/o CL
√ √ 

0.8522 0.9952 0.7947

w/o GTime
√ √ 

0.8519 0.9952 0.7962

w/o A
√ √

0.8512 0.9882 0.7973

Ours
√ √ √

0.8858 0.9987 0.8310

in the encoder, which further affects the data reconstruction. Finally, these factors collectively contribute to the model’s decline in 

anomaly detection performance.

Additionally, we conduct experiments to evaluate how KAN influences time-series anomaly detection and how its improvements 

contribute to enhanced detection performance. The detailed experimental results can be found in Table 6. We compare two variants: 

(1) w/o IK & w/ MLP, where the attention mechanism replaces the improved KAN with an MLP, and (2) w/o IK & w/ KAN, where the 

attention mechanism retains the original KAN. In comparing the performance of “w/o IK & w/ MLP” and “w/o IK & w/ KAN” on the six 

datasets, we find that the detection outcomes for the two methods complement each other across various datasets. This phenomenon 

may be attributed to the fact that KAN performs better on specific tasks such as fitting data and solving partial differential equations, 

whereas its effect may be less significant when dealing with real-world scenarios such as time series data. In our study, we improve 

KAN by replacing the B-spline function with LeakyReLU to obtain the GDCMAD proposed in this paper. Our model demonstrates 

improved detection performance on all datasets, regardless of their size, as shown by the experimental results.

5.7. Validation study

In this section, our goal is to explore how time-series data augmentation might influence the inherent properties of time-series 

data in the context of contrastive learning. Experimental results are presented in Table 7. To this end, we perform two experimental 

setups on the three datasets PSM, ASD, and SMAP: 1) w/ AUG: In this setup, we input the augmented time series data into GDCMAD 

along with the raw data. 2) w/ AUG & w/o EXT: In this setup, we remove the external contrastive learning module and input the

Information Sciences 728 (2026) 122790 

13 



S. He, W. He, M. Du et al.

Table 6 

A comparative study on the effects of KAN variants.

Methods MSL SMD

F1 R P F1 R P

w/o IK & w/ MLP 0.9255 0.9804 0.9052 0.9456 0.9589 0.9377

w/o IK & w/ KAN 0.9150 0.9804 0.8921 0.9482 0.9622 0.9404

GDCMAD 0.9423 0.9804 0.9229 0.9496 0.9591 0.9455

Methods SWaT PSM

F1 R P F1 R P

w/o IK & w/ MLP 0.9365 0.9350 0.9379 0.9310 0.8967 0.9680

w/o IK & w/ KAN 0.9356 0.9350 0.9362 0.9309 0.8956 0.9690

GDCMAD 0.9501 0.9232 0.9787 0.9666 0.9674 0.9657

Methods ASD SMAP

F1 R P F1 R P

w/o IK & w/ MLP 0.9242 0.9141 0.9438 0.8146 0.9769 0.7540

w/o IK & w/ KAN 0.9217 0.9551 0.8995 0.8540 0.9769 0.8146

GDCMAD 0.9248 0.9242 0.9367 0.8858 0.9987 0.8310

Table 7 

Validation study.

Methods PSM ASD

F1 R P F1 R P

w/ AUG 0.9632 0.9681 0.9584 0.9221 0.9090 0.9484

w/ AUG & w/o EXT 0.9527 0.9969 0.9122 0.9192 0.9141 0.9370

GDCMAD 0.9666 0.9674 0.9657 0.9248 0.9242 0.9367

Methods SMAP AVERAGE

F1 R P F1 R P

w/ AUG 0.8554 0.9987 0.8045 0.9135 0.9586 0.9038

w/ AUG & w/o EXT 0.8551 0.9922 0.8038 0.9090 0.9677 0.8843

GDCMAD 0.8858 0.9987 0.8310 0.9257 0.9634 0.9111

augmented time series data along with the raw data. Based on the figures in Table 7, we find that the performance of both w/ AUG 

and w/ AUG & w/o EXT degrades with the addition of the augmented data, which indicates that time-series data augmentation may 

negatively impact the intrinsic properties of the time-series data. In addition, w/ AUG slightly outperforms w/ AUG & w/o EXT, which 

suggests that augmenting time-series data could potentially harm its inherent properties.

5.8. Noise experiment

In this section, we evaluate the robustness of GDCMAD to real-world noisy data by injecting Gaussian noise at intensities of 0 %, 

5 %, 10 %, 15 %, and 20 % into the PSM and SWaT datasets. As shown in Fig. 6, the F1-score remains relatively stable as the noise 

level increases, exhibiting only a slight decline. Notably, even under 20 % Gaussian noise, the model achieves a high F1-score with 

just a 2.6 % reduction compared to the noise-free baseline. This robustness stems from our dual contrastive learning framework,

which integrates graph structural contrast to preserve spatio-temporal topological consistency and LSTM-based temporal contrast to 

learn noise-invariant representations. The combination of these two objectives enables the model to mitigate the impact of noise on 

anomaly detection performance.

5.9. Model interpretability analysis

To elucidate the decision-making mechanism of the proposed GDCMAD model, we conduct an interpretability analysis using 

SHAP (SHapley Additive exPlanations) values. This analysis aims to quantify the contribution of each input feature to the final 

anomaly score, thereby providing insights into which variables and time steps the model deems most critical for its detection. Given 

the dual emphasis of our model on capturing both inter-variable and temporal dependencies, we extend the SHAP framework to 

evaluate feature importance across the entire spatio-temporal input matrix. Fig. 7 shows the SHAP heatmap on the PSM dataset. In 

this visualization, the horizontal axis denotes time, while the vertical axis denotes variables. The color intensity at any coordinate 

reflects the magnitude of the SHAP value, with brighter hues indicating a stronger contribution to the anomaly score. The heatmap 

reveals that the model’s decision is not homogeneously distributed across the input space. Instead, it is predominantly driven by a 

concentrated subset of variables exhibiting significant deviations within a specific, narrow time period. This pattern demonstrates 

that GDCMAD effectively pinpoints anomalies by focusing on localized spatio-temporal patterns rather than responding to global,
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Fig. 6. Effect of noise level on the F1 score.

Fig. 7. SHAP heatmap on the PSM dataset.

diffuse changes. Moreover, the heatmap highlights that the model captures structured correlations: some variables show spikes in 

importance that coincide with correlated fluctuations in other dimensions, reflecting the role of graph-based modeling in focusing on 

interdependent signals.

This interpretability analysis reinforces that the model’s architectural components, designed to learn from both variable interac-

tions and temporal dynamics, collectively enable it to identify and attribute anomalies to their root causes in the data.

5.10. Limitations and practical scope

To better characterize the practical scope of GDCMAD, we provide an analysis of its performance boundaries that complements 

the preceding experiments.

Although the parameter studies in Section 5.5 show that the model remains generally stable across different hyperparameter 

settings, performance variability on datasets such as MSL and SMAP indicates a sensitivity to configuration. Specifically, the model 

may fail to reliably capture anomalies that are very short in duration compared to the chosen context window, as their distinctive 

characteristics can be diluted within long input windows.

The noise experiments in Section 5.8 demonstrate that the method is resilient under moderate noise corruption, yet the model’s 

performance is inevitably challenged in environments where the noise amplitude rivals or exceeds that of true anomalies. This implies 

that in high-noise environments, the model struggles to differentiate true anomalies from noise-induced artifacts.

In summary, GDCMAD is most effective in environments characterized by stable temporal patterns and a relatively uncontaminated 

normal data distribution. Conversely, it may be less effective at detecting short-lived anomalies in long sequences, or operating under 

conditions with substantial noise or anomaly contamination.
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6. Conclusions

To address the challenges of anomaly detection in MTS, this paper proposes an autoencoder-based unsupervised detection method, 

i.e., GDCMAD. The method effectively overcomes the problem of limited data representation and insufficient discriminative ability. 

Experimental results across six publicly available datasets show that GDCMAD achieves superior anomaly detection performance 

compared to all nine baseline methods. However, with the development of society, data privacy protection is becoming increasingly 

important. Therefore, in future research, we will focus more on data privacy protection while steadily enhancing the model’s anomaly 

detection.
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